
Tree Borrows
Neven Villani,¹ Johannes Hostert,² Derek Dreyer,³ Ralf Jung²

¹ENS Paris-Saclay, Université Paris-Saclay

²ETH Zurich

³MPI-SWS

Rust Verification Workshop

2024-04-08

Strong guarantees for references

aliasing
&

mutability

&mut → mutation, no aliasing

& → aliasing, no mutation⁴

⁴for non-interior-mutable types

Tree Borrows 2

2

Absence of aliasing + mutability allows optimizations

fn foo(y: &mut u64) {
 let val = *y;
 *y = 42;

 *y = val;
}

Tree Borrows 3

3

Absence of aliasing + mutability allows optimizations

fn foo(y: &mut u64) {
 let val = *y;
 //*y = 42;

 *y = val;
}

Tree Borrows 3

3

Absence of aliasing + mutability allows optimizations

fn foo(y: &mut u64) {
 let val = *y;
 //*y = 42;

 //*y = val;
}

Tree Borrows 3

3

Absence of aliasing + mutability allows optimizations

fn foo(y: &mut u64) {
 //let val = *y;
 //*y = 42;

 //*y = val;
}

Tree Borrows 3

3

Absence of aliasing + mutability allows optimizations

fn foo(y: &mut u64) {
 let val = *y;
 *y = 42;

 *y = val;
}

⟹
optimized

fn foo(y: &mut u64) {
 //let val = *y;
 //*y = 42;

 //*y = val;
}

Tree Borrows 3

3

Absence of aliasing + mutability allows optimizations

fn foo(y: &mut u64) {
 let val = *y;
 *y = 42;
 opaque();
 *y = val;
}

⟹
optimized

fn foo(y: &mut u64) {
 //let val = *y;
 //*y = 42;
 opaque();
 //*y = val;
}

Tree Borrows 3

3

fn foo(y: &mut u64) {
 let val = *y;
 *y = 42;
 opaque();
 *y = val;
}

Tree Borrows 4

4

static mut X: u64 = 0;

fn foo(y: &mut u64) {
 let val = *y;
 *y = 42;
 opaque();
 *y = val;
}

Tree Borrows 4

4

static mut X: u64 = 0;

fn main() {
 foo(unsafe { &mut X });
}

fn foo(y: &mut u64) {
 let val = *y;
 *y = 42;
 opaque();
 *y = val;
}

Tree Borrows 4

4

static mut X: u64 = 0;

fn main() {
 foo(unsafe { &mut X });
}

fn foo(y: &mut u64) {
 let val = *y;
 *y = 42;
 println!("{}", unsafe { X }); // prints 42
 *y = val;
}

Tree Borrows 4

4

static mut X: u64 = 0;

fn main() {
 foo(unsafe { &mut X });
}

fn foo(y: &mut u64) {
 //let val = *y;
 //*y = 42;
 println!("{}", unsafe { X }); // prints 0
 //*y = val;
}

Tree Borrows 4

4

static mut X: u64 = 0;

fn main() {
 foo(unsafe { &mut X });
}

fn foo(y: &mut u64) {
 //let val = *y;
 //*y = 42;
 println!("{}", unsafe { X }); // prints 0
 //*y = val;
} Optimization changes observable behavior…

Is the optimization incorrect?

Tree Borrows 4

4

It’s not the optimization that is wrong, it’s the code

Tree Borrows enforces aliasing rules by adding proof obligations to
unsafe blocks.

Code that violates these rules is declared Undefined Behavior.

Tree Borrows 5

5

It’s not the optimization that is wrong, it’s the code

Tree Borrows enforces aliasing rules by adding proof obligations to
unsafe blocks.

Code that violates these rules is declared Undefined Behavior.

Sounds familiar?
Stacked Borrows has the same purpose,
Tree Borrows is its successor.

Tree Borrows 5

5

Stacked Borrows

Adds extra state to the abstract machine to track provenance.
Distinguishes pointers to the same location with a tag.

Tree Borrows 6

6

Stacked Borrows

Adds extra state to the abstract machine to track provenance.
Distinguishes pointers to the same location with a tag.

Uses a stack to store permissions.
Enforces that borrows are well-bracketed.

Tree Borrows 6

6

However, Stacked Borrows…

• does not handle two-phase borrows (gives up on any optimization)

Tree Borrows 7

7

However, Stacked Borrows…

• does not handle two-phase borrows (gives up on any optimization)

 vec.push(vec[0]);
// ^^^ 1. implicit &mut in function arguments
// ^^^^^^ 2. read-only operation before function
// entry does not invalidate the &mut

Tree Borrows 7

7

However, Stacked Borrows…

• does not handle two-phase borrows (gives up on any optimization)

 vec.push(vec[0]);
// ^^^ 1. implicit &mut in function arguments
// ^^^^^^ 2. read-only operation before function
// entry does not invalidate the &mut

• forbids common unsafe patterns (declared UB)

Tree Borrows 7

7

However, Stacked Borrows…

• does not handle two-phase borrows (gives up on any optimization)

 vec.push(vec[0]);
// ^^^ 1. implicit &mut in function arguments
// ^^^^^^ 2. read-only operation before function
// entry does not invalidate the &mut

• forbids common unsafe patterns (declared UB)

let from = data.as_ptr();
// SB inserts an implicit write, killing the raw pointer
let to = data.as_mut_ptr();
copy_nonoverlapping(from, to.add(1), 1); // UB

Tree Borrows 7

7

However, Stacked Borrows…

• does not handle two-phase borrows (gives up on any optimization)

 vec.push(vec[0]);
// ^^^ 1. implicit &mut in function arguments
// ^^^^^^ 2. read-only operation before function
// entry does not invalidate the &mut

• forbids common unsafe patterns (declared UB)

let from = data.as_ptr();
// SB inserts an implicit write, killing the raw pointer
let to = data.as_mut_ptr();
copy_nonoverlapping(from, to.add(1), 1); // UB

from data

to data

data

from to

Tree Borrows 7

7

However, Stacked Borrows…

• does not handle two-phase borrows (gives up on any optimization)

 vec.push(vec[0]);
// ^^^ 1. implicit &mut in function arguments
// ^^^^^^ 2. read-only operation before function
// entry does not invalidate the &mut

• forbids common unsafe patterns (declared UB)

let from = data.as_ptr();
// SB inserts an implicit write, killing the raw pointer
let to = data.as_mut_ptr();
copy_nonoverlapping(from, to.add(1), 1); // UB

from data

to data

data

from to

The stack is too rigid to represent the
exact relationship

Tree Borrows 7

7

Stacked Borrows ⇝ Tree Borrows

Stack is not precise enough.

Use a tree instead → accurate tracking of pointer ancestry

Tree Borrows 8

8

Stacked Borrows ⇝ Tree Borrows

Stack is not precise enough.

Use a tree instead → accurate tracking of pointer ancestry

Results in
• accurate handling of two-phase borrows
• more permitted patterns
• simpler rules, fewer exceptions

Tree Borrows 8

8

Design constraints

Enough UB
• strict enough that interesting optimizations are possible
→ guided by desirable optimizations, and expected UB
→ formalized in Coq, ongoing work to prove correctness

Tree Borrows 9

9

Design constraints

Enough UB
• strict enough that interesting optimizations are possible
→ guided by desirable optimizations, and expected UB
→ formalized in Coq, ongoing work to prove correctness

Not too much
• permissive enough that existing libraries are correct
→ guided by common patterns, complaints about Stacked Borrows
→ implemented in the Miri interpreter, checked against libraries

Tree Borrows 9

9

Tracking relationships

Tracking relationships

self

new

reborrows
create

immediate children

let new = &*self;

Tree Borrows 11

11

Tracking relationships

self

self & strict children
→ children

Tree Borrows 11

11

Tracking relationships

self

self & strict children
→ children

Tree Borrows 11

11

Tracking relationships

self

self & strict children
→ children

Tree Borrows 11

11

Tracking relationships

self

parents & cousins
→ foreign

Tree Borrows 11

11

Tracking relationships

self

parents & cousins
→ foreign

Tree Borrows 11

11

Tracking relationships

self

parents & cousins
→ foreign

Tree Borrows 11

11

Tracking relationships

self

self & strict children
→ children

parents & cousins
→ foreign

Tree Borrows 11

11

State machine

State machine

Per-location permission

After creation each pointer experiences a sequence of
child/foreign read/write accesses and gains/loses permissions
in consequence

Tree Borrows 13

13

State machine

Reserved

Active

Frozen

Disabled

foreign w
rite

child write

foreign read

any read

child r/w

any read

foreign r/w

Tree Borrows 14

14

State machine

Reserved

Active

Frozen

Disabled

foreign w
rite

child write

foreign read

any read

child r/w

any read

foreign r/w

&mut not yet written to

&mut already written

write to it

Tree Borrows 14

14

State machine

Reserved

Active

Frozen

Disabled

foreign w
rite

child write

foreign read

any read

child r/w

any read

foreign r/w

exclusive access

shared access

other pointer gains access

Tree Borrows 14

14

State machine

Reserved

Active

Frozen

Disabled

foreign w
rite

child write

foreign read

any read

child r/w

any read

foreign r/w

shared access

any read-only operation

Tree Borrows 14

14

State machine

Reserved

Active

Frozen

Disabled

foreign w
rite

child write

foreign read

any read

child r/w

any read

foreign r/w

shared access

no access

other pointer gains exclusive access

Tree Borrows 14

14

First example contains UB

First example contains UB

static mut X = 0;
let y = &mut X;
let val = *y;
*y = 42;
print!(X); // read access violates uniqueness of y
*y = val;

Tree Borrows 16

16

First example contains UB

Alloc X static mut X = 0;
let y = &mut X;
let val = *y;
*y = 42;
print!(X);
*y = val;

X Active
Alloc new

Reserved

Active

Frozen

Disabled

foreign w
rite

child write

foreign read

any read

child r/w

any read

foreign r/w

Tree Borrows 16

16

First example contains UB

Borrow y
static mut X = 0;
let y = &mut X;
let val = *y;
*y = 42;
print!(X);
*y = val;

X

y

old: Active

Active

Reserved
Borrow

↓child read

new

Reserved

Active

Frozen

Disabled

foreign w
rite

child write

foreign read

any read

child r/w

any read

foreign r/w

Tree Borrows 16

16

First example contains UB

Read y

static mut X = 0;
let y = &mut X;
let val = *y;
*y = 42;
print!(X);
*y = val;

X

y

old: Active

old: Reserved

Active

Reserved
Read

↓child read

↓child read

Reserved

Active

Frozen

Disabled

foreign w
rite

child write

foreign read

any read

child r/w

any read

foreign r/w

Tree Borrows 16

16

First example contains UB

Write y

static mut X = 0;
let y = &mut X;
let val = *y;
*y = 42;
print!(X);
*y = val;

X

y

old: Active

old: Reserved

Active

Active
Write

↓child write

↓child write

Reserved

Active

Frozen

Disabled

foreign w
rite

child write

foreign read

any read

child r/w

any read

foreign r/w

Tree Borrows 16

16

First example contains UB

Read X

static mut X = 0;
let y = &mut X;
let val = *y;
*y = 42;
print!(X);
*y = val;

X

y

old: ActiveRead

old: Active

Active

Frozen

↓child read

↓foreign read

Reserved

Active

Frozen

Disabled

foreign w
rite

child write

foreign read

any read

child r/w

any read

foreign r/w

Tree Borrows 16

16

First example contains UB

Write y

static mut X = 0;
let y = &mut X;
let val = *y;
*y = 42;
print!(X);
*y = val;

X

y

old: Active

old: Frozen

Active

UB
Write

↓child write

↓child write

Reserved

Active

Frozen

Disabled

foreign w
rite

child write

foreign read

any read

child r/w

any read

foreign r/w

Tree Borrows 16

16

First example contains UB

Write y

static mut X = 0;
let y = &mut X;
let val = *y;
*y = 42;
print!(X);
*y = val;

X

y

old: Active

old: Frozen

Active

UB
Write

↓child write

↓child write

Reserved

Active

Frozen

Disabled

foreign w
rite

child write

foreign read

any read

child r/w

any read

foreign r/w

• Exclusively owned &mut is Active
• Transitions from Active detect

violations of uniqueness

Tree Borrows 16

16

Raw pointers

Raw pointers

let mut x = 0u64;
let r = addr_of_mut!(x);
x = 42; // x and r should be interchangeable
r.write(50);

Tree Borrows 18

18

Raw pointers

Alloc x let mut x = 0u64;
let r = addr_of_mut!(x);
x = 42;
r.write(50);

x Active
Alloc new

Reserved

Active

Frozen

Disabled

foreign w
rite

child write

foreign read

any read

child r/w

any read

foreign r/w

Tree Borrows 18

18

Raw pointers

Raw r
let mut x = 0u64;
let r = addr_of_mut!(x);
x = 42;
r.write(50);

x,r
old: Active

Active
Raw

Reserved

Active

Frozen

Disabled

foreign w
rite

child write

foreign read

any read

child r/w

any read

foreign r/w

Tree Borrows 18

18

Raw pointers

Write x

let mut x = 0u64;
let r = addr_of_mut!(x);
x = 42;
r.write(50);

x,r
old: Active

Active
Write ↓child write

Reserved

Active

Frozen

Disabled

foreign w
rite

child write

foreign read

any read

child r/w

any read

foreign r/w

Tree Borrows 18

18

Raw pointers

Write r

let mut x = 0u64;
let r = addr_of_mut!(x);
x = 42;
r.write(50);

x,r
old: Active

Active
Write ↓child write

Reserved

Active

Frozen

Disabled

foreign w
rite

child write

foreign read

any read

child r/w

any read

foreign r/w

Tree Borrows 18

18

Raw pointers

Write r

let mut x = 0u64;
let r = addr_of_mut!(x);
x = 42;
r.write(50);

x,r
old: Active

Active
Write ↓child write

Reserved

Active

Frozen

Disabled

foreign w
rite

child write

foreign read

any read

child r/w

any read

foreign r/w

• Raw pointers inherit tag
(and permissions with it)

• Same approach for interior mutability

Tree Borrows 18

18

All mutable references are
two-phase borrows

All mutable references are two-phase borrows

let mut x = 0u64;
let y = &*addr_of!(x);
let z = &mut x; // Create mutable reference
let v = read(y);
write(z, 42); // Use it mutably

Tree Borrows 20

20

All mutable references are two-phase borrows

let mut x = 0u64;
let y = &*addr_of!(x);
let z = &mut x;
let v = read(y); // Read accesses still allowed
write(z, 42);

Tree Borrows 20

20

All mutable references are two-phase borrows

Alloc x let mut x = 0u64;
let y = &*addr_of!(x);
let z = &mut x;
let v = read(y);
write(z, 42);

x Active
Alloc new

Reserved

Active

Frozen

Disabled

foreign w
rite

child write

foreign read

any read

child r/w

any read

foreign r/w

Tree Borrows 20

20

All mutable references are two-phase borrows

Borrow y
let mut x = 0u64;
let y = &*addr_of!(x);
let z = &mut x;
let v = read(y);
write(z, 42);

x

y

old: Active

Active

Frozen
Borrow

↓child read

new

Reserved

Active

Frozen

Disabled

foreign w
rite

child write

foreign read

any read

child r/w

any read

foreign r/w

Tree Borrows 20

20

All mutable references are two-phase borrows

Borrow z

let mut x = 0u64;
let y = &*addr_of!(x);
let z = &mut x;
let v = read(y);
write(z, 42);

x

y z

old: Active

old: Frozen

Active

Frozen Reserved
Borrow

↓child read

↓foreign read new

Reserved

Active

Frozen

Disabled

foreign w
rite

child write

foreign read

any read

child r/w

any read

foreign r/w

Tree Borrows 20

20

All mutable references are two-phase borrows

Read z

let mut x = 0u64;
let y = &*addr_of!(x);
let z = &mut x;
let v = read(y);
write(z, 42);

x

y z

old: Active

old: Frozen old: Reserved

Active

Frozen Reserved
Read

↓child read

↓child read ↓foreign read

Reserved

Active

Frozen

Disabled

foreign w
rite

child write

foreign read

any read

child r/w

any read

foreign r/w

Tree Borrows 20

20

All mutable references are two-phase borrows

Write y

let mut x = 0u64;
let y = &*addr_of!(x);
let z = &mut x;
let v = read(y);
write(z, 42);

x

y z

old: Active

old: Frozen old: Reserved

Active

Disabled Active
Write

↓child write

↓foreign write ↓child write

Reserved

Active

Frozen

Disabled

foreign w
rite

child write

foreign read

any read

child r/w

any read

foreign r/w

Tree Borrows 20

20

All mutable references are two-phase borrows

Write y

let mut x = 0u64;
let y = &*addr_of!(x);
let z = &mut x;
let v = read(y);
write(z, 42);

x

y z

old: Active

old: Frozen old: Reserved

Active

Disabled Active
Write

↓child write

↓foreign write ↓child write

Reserved

Active

Frozen

Disabled

foreign w
rite

child write

foreign read

any read

child r/w

any read

foreign r/w

• &mut starts Reserved
• Reserved tolerates all read accesses
• Tree structure makes this possible

Tree Borrows 20

20

Conclusion

Conclusion

Learn more:
https://perso.crans.org/vanille/treebor/
• protectors on function arguments
• no range restriction on reborrow

Try it out:
https://github.com/rust-lang/miri
• use the flag -Zmiri-tree-borrows
• test your unsafe code, report any surprises!

Tree Borrows 22

22

https://perso.crans.org/vanille/treebor
https://github.com/rust-lang/miri

	Strong guarantees for references
	Absence of aliasing + mutability allows optimizations
	Its not the optimization that is wrong, its the code
	Sounds familiar?

	Stacked Borrows
	Stacked Borrows ⇝ Tree Borrows
	Design constraints
	Enough UB
	Not too much

	Tracking relationships
	State machine
	Per-location permission

	First example contains UB
	Raw pointers
	All mutable references are two-phase borrows
	Conclusion

