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First-Order Logic
Quantifying over individuals: ∀ab. a + b = b + a

▶ + is function symbol (of arity 2)
▶ = is relation symbol (of arity 2)
▶ Signature: collection of non-logical symbols (and their arity)
▶ Follow existing mechanization in FOL library [Kirst et al., 2022]

See Dominik’s talk on Friday, 9am @ Coq Workshop

Well-known decision problem: The Entscheidungsproblem
▶ VAL: Is a formula valid in all models?
▶ PRV: Is a formula provable?
▶ SAT: Is a formula satisfied in some model?

Classically: SAT(¬φ) ⇔ VALφ⇔ PRVc φ
All undecidable in general case [Church, 1936, Turing, 1936]
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Mechanized undecidability
▶ Classical Undecidability

Choose model of computation (Turing Machines, λ calculus)
Show a problem undecidable (Halting Problem, PCP, ...)

Build reductions to show more problems undecidable
Use Church-Turing-Thesis to argue computability intuitively

▶ Synthetic Undecidability [Forster, Kirst, and Smolka, 2019, Forster, 2021]
In Coq: All definable functions are computable
Mechanize many-one reductions without explicit model of computation
Start reductions at well-known undecidable problem
Heavily inspired by Synthetic Computability [Richman, 1983, Bauer, 2006]
Axiom-free, intuitionistic approach
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Variants of the Entscheidungsproblem
We consider VAL, SAT and PRV, subject to restrictions:

▶ Monadic signature: only unary symbols
▶ Dyadic signature: exactly one binary predicate
▶ Restricted to finite models
▶ Syntax restricted to (∀,→,⊥)-fragment (small fragment)
▶ Syntax restricted to (∀,→)-fragment (without negation)
▶ Not considered: small quantifier prefixes (i.e. ∀∃∗∀)
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Classifying FOL Problems
Undecidable Decidable
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Classifying FOL Problems
Undecidable Decidable

PRV,VAL, SAT
[Forster, Kirst, and Smolka, 2019]

Dyadic variant
[Kirst and Hermes, 2021]

Monadic variant

Finite VAL, SAT
[Kirst and Larchey-Wendling, 2020]

Finite Dyadic variant
[Kirst and Larchey-Wendling, 2020]

Finite Monadic variant

Mechanizations
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Diophantine Constraints
▶ Hilberts 10th Problem: Algorithm for solving polynomial equation with integer coefficients

▶ DPRM Theorem: No such algorithm exists [Matiyasevich, 1970]
▶ H10 is undecidable

Diophantine Constraints: Variants of H10, like for example
▶ System of multiple polynomial equations with coefficients in N
▶ System of equations, all of shape a + b = c, a · b = c, or a = 1

Undecidability is mechanized in Coq [Larchey-Wendling and Forster, 2019]
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Our Reductions
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Our Reductions
We show:
▶ VAL, PRV undecidable for (∀,→)-fragment and dyadic signature
▶ SAT, finite VAL, finite SAT undecidable for (∀,→,⊥)-fragment and dyadic signature

▶ strongest possible results (regarding signature and logical fragment)

Existing approaches: signature compression, classical syntax compression
Our approach: direct, compact reductions

from UDPC, our variant of Diophantine constraints

VAL SAT
PRV

finite SAT
finite VAL

HaltTM UDPC
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Uniform Diophantine Pair Constraints VAL SAT
PRV

finite SAT
finite VAL

H10 UDPC

∼ : N2 → N2 → P
(a, b) ∼(c, d) := a + b + 1 = c︸ ︷︷ ︸ ∧ d + d = b2 + b︸ ︷︷ ︸

▶ ∼ characterized as inductive relation
▶ ∼ can encode any polynomial on N
▶ UDPC: Given set of constraints of shape ∼, is there a solution?

Undecidable by reduction from Diophantine constraints
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A first-order theory of ∼ VAL SAT
PRV

finite SAT
finite VAL

H10 UDPC

▶ Idea: Encode constructor laws

▶ Problem: ∼ is binary relation on pairs, but characterized by their components

▶ Solution: First-order theory on N and N2

Standard model: D := N+ N2

Interpretation of ≈:
l r y : N (c, d) : N2

x : N x = y x = c
(a, b) : N2 y = b (a, b) ∼(c, d)

▶ Build formula φ ∼(a, b, c, d) encoding (a, b) ∼(c, d)

Hostert, Dudenhefner, Kirst Undecidability of Dyadic First-Order Logic in Coq ITP 2022, Haifa, August 9th 8
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Reducing to VAL VAL SAT
PRV

finite SAT
finite VAL

H10 UDPC

Given a collection of constraints h, create formula F(h) valid iff h has solution.

1. Find F(h):

F is computable since it is implemented in Coq
2. VAL F(h) ⇒ UDPC h

Extract using standard model
Axioms are satisfied by standard model ✓

3. UDPC h ⇒ VAL F(h)
Encode proof of (a, b) ∼(c, d) into model M
Induction on ∼

First find initial fragment of N in M
⇒ VAL undecidable for dyadic signature

Hostert, Dudenhefner, Kirst Undecidability of Dyadic First-Order Logic in Coq ITP 2022, Haifa, August 9th 9
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Sharper results for VAL, SAT VAL SAT
PRV

finite SAT
finite VAL

H10 UDPC

Restrict the admissible logical operators to ∀,→

1. Negative translation [Gödel, 1933, Gentzen, 1936]
Replace ∃ by ¬∀¬ etc.
Does not work in intuitionistic logic

2. Friedman’s A-translation [Friedman, 1978]
Replace ⊥ by some formula A...
such that standard interpretation of A is UDPC h...
without introducing additional relation symbols

▶ Combine both to preserve validity
By cleverly choosing A, we can escape double negation once

In summary:
▶ VAL undecidable for dyadic signature over (∀,→)-fragment
▶ SAT undecidable for dyadic signature (∀,→,⊥)-fragment

Hostert, Dudenhefner, Kirst Undecidability of Dyadic First-Order Logic in Coq ITP 2022, Haifa, August 9th 10
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Provability VAL SAT
PRV

finite SAT
finite VAL

H10 UDPC

▶ In classical meta-theory: VALφ⇒ PRVc φ [Gödel, 1930]
▶ In intuitionistic meta-theory: VALφ⇒ ¬¬PRVc φ for (∀,→,⊥)-fragment
▶ Soundness PRVi φ⇒ VALφ still holds
▶ Dedicated reduction to (intuitionistic) PRV using same reduction function
▶ Results:

PRV undecidable for dyadic signature over (∀,→)-fragment
Kripke semantics undecidable for dyadic signature over (∀,→,⊥)-fragment
Classical provability PRVc similarly undecidable, assuming LEM

Hostert, Dudenhefner, Kirst Undecidability of Dyadic First-Order Logic in Coq ITP 2022, Haifa, August 9th 11
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Finite Satisfiability VAL SAT
PRV

finite SAT
finite VAL

H10 UDPC

▶ Restrict models to finite types
Follow existing mechanization [Kirst and Larchey-Wendling, 2020]
Finite models also have decidable predicates

▶ finite SAT mechanization build inversely to previous reduction
Before: Encode given solution into model
Now: Given model encoding solution, extract it
Axioms resembling eliminators

▶ Finite standard model: M = N≤m + N2
≤m

⇒ Finite SAT is undecidable for dyadic signature
⇒ Finite VAL is undecidable for dyadic signature
⇒ Negative translation yields same results for (∀,→,⊥)-fragment
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⇒ Finite SAT is undecidable for dyadic signature
⇒ Finite VAL is undecidable for dyadic signature
⇒ Negative translation yields same results for (∀,→,⊥)-fragment
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Working in object logics
We use existing mechanization of first-order logic [Kirst et al., 2022]
▶ Formulated using de Bruijn binders

Nice for meta-theory (e.g. deductive Weakening lemma)
Bad user experience when used as input language
Working within concrete model is intricate

▶ Syntactic proofs are cumbersome to construct
Lots of reasoning for trivial properties
No automation
Managing the context again requires analyzing de Bruijn binders

▶ Idea: Develop toolbox easing these tasks [Hostert et al., 2021]
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Comparison of FOL undecidability/reductions

Paper Dyadic
signature

Small
fragment Coq Reduction

[Church, 1936] × × × λ-calculus
[Turing, 1936] × × × Turing machines

[Kalmár, 1937] ✓ × × signature compression
[Gentzen, 1936] ✓ ✓ × negative translation
[Forster, Kirst, and Smolka, 2019] × ✓ ✓ PCP
[Kirst and Hermes, 2021] ✓ × ✓ PCP via ZF
The present work ✓ ✓ ✓ UDPC/H10
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Comparison of Finite Satisfiability results

Paper Dyadic
signature

Small
fragment Coq Method

[Trakhtenbrot, 1950] × × × µ-recursive functions

[Kalmár, 1937] ? × × signature compression
[Libkin, 2004] (✓) × × TM
[Kirst and
Larchey-Wendling, 2020] ✓ × ✓ PCP

signature compression
The present work ✓ ✓ ✓ UDPC/H10
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Summary
We contribute the mechanized undecidability of
▶ PRV,VAL for dyadic signature over (∀,→)-fragment
▶ SAT, finite SAT, finite VAL for dyadic signature over (∀,→,⊥)-fragment

▶ Using UDPC, a novel decision problem suitable for compact, direct reductions

minPRV

PCP UDPC

PRVZF

0.94.5
0.1Coq mechanization:

▶ ∼900 LoC for PRV and corollaries
▶ ∼1200 LoC for finite SAT,VAL
▶ ∼200 LoC for UDPC

▶ Requires undecidability of H10:
8k LoC [Larchey-Wendling and Forster, 2019]
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Summary
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▶ PRV,VAL for dyadic signature over (∀,→)-fragment
▶ SAT, finite SAT, finite VAL for dyadic signature over (∀,→,⊥)-fragment
▶ Using UDPC, a novel decision problem suitable for compact, direct reductions

minPRV

PCP UDPC

PRVZF

0.94.5
0.1Coq mechanization:

▶ ∼900 LoC for PRV and corollaries
[Kirst and Hermes, 2021]: 4.5k LoC

▶ ∼1200 LoC for finite SAT,VAL
▶ ∼200 LoC for UDPC

▶ Requires undecidability of H10:
8k LoC [Larchey-Wendling and Forster, 2019]
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Summary
We contribute the mechanized undecidability of
▶ PRV,VAL for dyadic signature over (∀,→)-fragment
▶ SAT, finite SAT, finite VAL for dyadic signature over (∀,→,⊥)-fragment
▶ Using UDPC, a novel decision problem suitable for compact, direct reductions

minPRV

minFSAT

PCP UDPC

PRVZF

FSAT

0.9

1.2

4.5
0.1

0.5
4.5

Coq mechanization:
▶ ∼900 LoC for PRV and corollaries
▶ ∼1200 LoC for finite SAT,VAL

[Kirst and Larchey-Wendling, 2020]: >5k LoC

▶ ∼200 LoC for UDPC

▶ Requires undecidability of H10:
8k LoC [Larchey-Wendling and Forster, 2019]
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▶ Using UDPC, a novel decision problem suitable for compact, direct reductions

minPRV

minFSAT

PCP H10 UDPC

PRVZF

FSAT

0.9

1.2
0.2
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0.1

0.5
4.5

8.4

Coq mechanization:
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▶ ∼1200 LoC for finite SAT,VAL
▶ ∼200 LoC for UDPC
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Summary
We contribute the mechanized undecidability of
▶ PRV,VAL for dyadic signature over (∀,→)-fragment
▶ SAT, finite SAT, finite VAL for dyadic signature over (∀,→,⊥)-fragment
▶ Using UDPC, a novel decision problem suitable for compact, direct reductions

minPRV

minFSAT

PCP H10 UDPC

PRVZF

FSAT

0.9

1.2
0.2

4.5
0.1

0.5
4.5

8.4

Coq mechanization:
▶ ∼900 LoC for PRV and corollaries
▶ ∼1200 LoC for finite SAT,VAL
▶ ∼200 LoC for UDPC
▶ Requires undecidability of H10:

8k LoC [Larchey-Wendling and Forster, 2019]
Work contributed to the Coq Library of Undecidability Proofs [Forster et al., 2020]

https://www.ps.uni-saarland.de/extras/fol-dyadic/
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Synthetic Undecidability

Synthetic approach:

computable function

predicate P decidable:
∃f : N → B. (∀x.P x ⇔ f x = tt)

reduction P ⪯ Q:
∃F . (∀x.P x ⇔ Q(F x))

defines

de
fin

es

P undecidable:
decidable P ⇒ enumerable HALTTM

All functions defined
in constructive type theory

are computable

Any function is a
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Deduction system
C
Γ ⊢ φ
φ ∈ Γ

E
Γ ⊢ φ
Γ ⊢ ⊥

II
Γ ⊢ φ→ ψ

Γ, φ ⊢ ψ

IE
Γ ⊢ φ

Γ ⊢ φ→ ψ Γ ⊢ φ

CI
Γ ⊢ φ ∧ ψ

Γ ⊢ φ Γ ⊢ ψ

CE1
Γ ⊢ φ

Γ ⊢ φ ∧ ψ

CE2
Γ ⊢ ψ

Γ ⊢ φ ∧ ψ

DI1
Γ ⊢ φ ∨ ψ
Γ ⊢ φ

DI2
Γ ⊢ φ ∨ ψ
Γ ⊢ ψ

DE
Γ ⊢ θ

Γ ⊢ φ ∨ ψ Γ, φ ⊢ θ Γ, ψ ⊢ θ

AI
Γ ⊢ ∀φ
Γ[↑] ⊢ φ

AE
Γ ⊢ φ[t]
Γ ⊢ ∀φ

EI
Γ ⊢ ∃φ
Γ ⊢ φ[t]

EE
Γ ⊢ ψ

Γ ⊢ ∃φ Γ[↑], φ ⊢ ψ[↑]

Γ ⊢c φ also has Pierce rule ((φ→ ψ) → φ) → φ.
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[Trakhtenbrot, 1950]
▶ Very ancient notation
▶ Given a general-recursive function f , construct formula U that is finitely satisfied only if f

has a root
▶ Construction by induction on syntax of f
▶ Paper leaves actual construction to the reader
▶ Reduction is an interesting approach which might be elegantly mechanizable
▶ Paper is not concerned with minimal representation

[Kalmár, 1937] already published a reduction from FOL to FOL with minimal
signature
[Kalmár, 1937] claims the reduction should work for finite models without presenting
proof
The fact that one can reduce to a dyadic signature was folklore knowledge in 1950
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[Kirst and Larchey-Wendling, 2020]
Part on Trakhenbrot:
▶ Show FSAT undecidable by reducing from PCP
▶ Signature compression chain:

Arbitrary FOL with equality to arbitrary FOL without equality
▶ Take quotient over first-order indistinguishability

Arbitrary FOL to single predicate FOL
▶ Actually three different reductions
▶ Compress functions to predicates
▶ Compress predicates to one predicate + unary functions
▶ Compress functions to free variables

single predicate to dyadic predicate
▶ Construction using ∈ and HF-sets

Other results:
▶ Monadic signature is shown decidable

Function and relation symbols have arity ≤ 1, or
Relation symbols have arity 0
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[Libkin, 2004]
▶ Textbook on Finite Model Theory
▶ Interesting section for us is 9.1
▶ Reduction from Turing Machine Halting Problem to FSAT
▶ Making this use minimal signature is (explicitly) left to the reader
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The full reduction
1. Syntactic sugar:

N k := k#k
P ′ k := k#k → ⊥
P p l r := P ′ p ∧ N l ∧ N r ∧ l#p ∧ p#r
(a, b)#(c, d) := ∃p q,P p a b ∧ P q c d ∧ p#q
x ≡ y := ∀k, k#x ↔ k#y ∧ x#k ↔ y#k
x ≤ y := N x ∧ N y ∧ x#y
x < y := x ≤ y ∧ x ̸≡ y
rel a b c d m := (a, b)#(c, d) ∧ a ≤ m ∧ b ≤ m ∧ c ≤ m ∧ d ≤ m

2. Axioms:
∀xyz, x < y → y < z → x < z
∀a,N a → a ̸≡ 0 → ∃a′, (a′, 0)#(a, 0)
∀ab, (a, 0)#(b, 0) → a < b ∧ ∀k, k < b → k ≤ a
∀abcd, (a, b)#(c, d) → b ̸≡ 0 →
∃b′c′d ′, (b′, 0)#(b, 0) ∧ (c′, 0)#(c, 0) ∧ (a, b′)#(c′, d ′) ∧ (d ′, b′)#(d, d ′) ∧ d ′ < d
∀acd, (a, 0)#(c, d) → d ≡ 0
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Uniform Diophantine Pair Constraints

∼ : N2 → N2 → P
(a, b) ∼(c, d) := a + b + 1 = c︸ ︷︷ ︸ ∧ d + d = b2 + b︸ ︷︷ ︸

▶ ∼ as inductive relation axiomatizes itself
▶ ∼ can encode any equation on N
▶ UDPC: Given set of constraints of shape ∼, is there a solution?

Undecidable by reduction from H10
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finite VAL and the small fragment VAL SAT
PRV

finite SAT
finite VAL

H10 UDPC

Into the (∀,→,⊥)-fragment?

▶ Finite models behave classically: M ⊨ φ decidable
▶ Negative translation works in general
▶ Finite SAT is undecidable for dyadic signature over (∀,→,⊥)-fragment

What about finite VAL?
▶ Negate old reduction function
▶ Finite VAL is undecidable for dyadic signature over (∀,→,⊥)-fragment
▶ Conjecture: finite VAL undecidable for dyadic signature over (∀,→)-fragment

Friedman translation should be possible
Likely to require expanded standard model
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finite VAL and the small fragment VAL SAT
PRV

finite SAT
finite VAL

H10 UDPC

Into the (∀,→,⊥)-fragment?
▶ Finite models behave classically: M ⊨ φ decidable
▶ Negative translation works in general
▶ Finite SAT is undecidable for dyadic signature over (∀,→,⊥)-fragment

What about finite VAL?
▶ Negate old reduction function
▶ Finite VAL is undecidable for dyadic signature over (∀,→,⊥)-fragment
▶ Conjecture: finite VAL undecidable for dyadic signature over (∀,→)-fragment

Friedman translation should be possible
Likely to require expanded standard model
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