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Abstract

In 1936, Church and Turing independently negatively answered the Entscheidungs-
problem, showing that validity, satisfiability, and provability are undecidable for
first-order logic. It was proven shortly afterwards by Kalmár and others that this
result holds even when formulas are restricted to just a single binary relation. In
1950, Trakhtenbrot showed this signature is also the smallest one for which finite
first-order logic satisfiability is undecidable.
Over the last few decades, there has been interest in mechanizing mathematical
proofs in interactive theorem provers. Since then, a significant amount of math-
ematics was mechanized, including the mentioned undecidability results for the
first-order problems.
In this thesis, we present and mechanize a new proof of the undecidability of these
first-order problems in the minimal signature. Our proof aims to be more feasible
and more direct compared to previous mechanizations, by starting at a variant of
Diophantine constraints, a problem shown undecidable in 1970 by Matiyasevitch.
While minimizing the signature, we also investigate the minimal class of logical
connectives required for the aforementioned problems to be undecidable. In partic-
ular, we present the first mechanized proof that first-order validity and provability
are undecidable for formulas with a single binary relation in the forall-implicative
fragment without negation.
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Chapter 1

Introduction

In the early 20th century, many mathematicians became increasingly interested
in formalizing the entirety of mathematics on a uniform foundation. In doing so,
logicians invented several logics and deduction systems, aiming to give a syntactical
definition to mathematical truth. In particular, first-order logic became influential.
In 1928, Hilbert and Ackermann posed the Entscheidungsproblem [13], asking
for a general and effective procedure for deciding whether a given statement in
first-order logic is valid. In 1936, Church [2] and Turing [29] independently showed
that such a general procedure does not exist – validity, satisfiability and provability
for first-order logic are undecidable.
Parallel to this, logicians had already begun investigating “reductions” of first-order
formulas, which involved minimizing formulas into a smaller version of first-order
logic while preserving validity. In particular, one could reduce the number and
arity of predicate symbols, or the number of the allowed logical connectives – i.e.,
by restricting oneself to a smaller signature or logical fragment. Alongside this,
there also was interest in finite model theory, which (among other things) involved
restricting the semantics of first-order logic.
Seminal results by Kalmár ([16], for small signatures) and Trakhtenbrot ([28], for
small signatures on finite models) gave sharper descriptions of the problems related
to the Entscheidungsproblem: They are undecidable as soon as there is a single
binary predicate, even when one only considers formulas using a heavily restricted
set of logical connectives, in some cases not even involving falsity. For finite models,
the same results hold, except that one may not necessarily restrict the use of falsity.
Since then, several different strategies for proving these results have been found.
Related to these developments was the search for a foundation of mathematics.
Nowadays, axiomatic (Zermelo-Fraenkel) set theory is considered the “dominant”
foundation. Alternative theories have been proposed, most importantly type theory
[30, 23]. Type theory bases all mathematics on types instead of sets. Along with
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this, intuitionistic or constructive logic, which does not assume the law of excluded
middle, has become increasingly important, since such a logic is much more natural
in type theory.

Type theory was hugely influential in the development of proof assistants like
Coq [27], Agda [25], or Lean [4], which are computer programs that can check
mathematical proofs for correctness. Such proof assistants are often based on type-
theoretic mathematics because type theory often offers a natural implementation
as a computer program. Mechanizing a proof in such an assistant allows one to be
very sure about its correctness, but this often involves significant work since the
proof has to be given completely, including lemmas usually considered trivial.

For computability theory, there are several different approaches formechanization in
a proof assistant: First, one can follow the usual development of classical computabil-
ity theory and mechanize Turing machines or equivalent models of computation.
However, this is often undesirable due to the large amount of specificity required
for the mechanization. A different, synthetic approach by Bauer [1] building on
work by Richman [26] involves recognizing that a change of one’s foundation of
mathematics to one only admitting computable functions can abstract from having
to specify a concrete model of computation. Type theory in particular is such a
computable foundation. This approach has been adapted by Forster et al. [5] to
also mechanize undecidability proofs.

A significant collection of undecidability proofs for many problems has been col-
lected in the Coq Library of Undecidability Proofs [6], including the mentioned
results for small signatures [17] and finite models [18]. However, the existing mech-
anizations of these results are rather involved, proceeding using ZF (a first-order
set theory), or by a mechanized chain of quotients and signature compressions.
1.1 Contributions
In this thesis, we contribute alternative proofs of the undecidability of validity, satis-
fiability, provability, and finite satisfiability for small signatures, which we suggest is
more feasible compared to the existing approaches. Our approach starts by picking
a special Diophantine constraints problem UDPC which is easily axiomatizable in
first-order logic. In general, it is undecidable whether a system of Diophantine
equations has a solution [24], a result which has also been mechanized [20]. While
this approach allows for a shorter proof compared to previous mechanizations, it
relies on the undecidability of Diophantine equations, which has been very hard to
prove historically.

Besides showing the undecidability of the mentioned problems for small signa-
tures, we also show undecidability for the small logical fragment. In particular,
we show that it suffices to allow only forall quantifiers, implication, and falsity in
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first-order formulas for the mentioned problems to become undecidable, and for
some problems, even falsity is unnecessary. As far as we know, we present the first
mechanization of the undecidability of validity and provability for the minimal
signature and minimal logical fragment.
The definition of the problem UDPC is not due to me. My contributions are showing
the undecidability of UDPC by reducing from UDC, the inductive characterization
of UDPC and the remaining reductions to VAL, PRV, FSAT and so on. For the VAL
reduction, I was initially given a first-order axiomatization, only contributing the
proof that this reduction function is correct. Later, I further modified that reduction
function into the current version of Chapter 5, and then transformed it into the
version of Chapters 6 and 7. For FSAT and Chapter 8, I found and verified the
reduction function presented there. The mechanization of the double negation
translation of Chapter 9 is also due to me.
1.2 Outline
This thesis is structured as follows: In Chapter 2, we introduce our type-theoretic
setting. In Chapter 3, we further introduce basic concepts like first-order logic and
synthetic computability theory. In Chapter 4, we present our source problem UDPC,
which allows for elegantly short reduction. Chapter 5 gives a first proof of the
undecidability of validity over small signatures, which is refined in Chapter 6 to
only require a small logical fragment. Chapter 7 extends the results to show that
natural deduction systems for first-order logic are also undecidable, concluding that
satisfiability, validity and provability are undecidable in the mentioned small cases.
Continuing in Chapter 8, we show that finite satisfiability (i.e. satisfiability restricted
to finite models) is undecidable for small signatures, which is then extended a
small logical fragment in Chapter 9. Chapter 10 summarizes our results, details
insights on the Coq mechanization, and compares them to the existing literature
and mechanizations.
Additionally, we include a complete mechanization of our results in the Coq proof
assistant. In the electronic version of this thesis, most lemmas, theorems, and
statements are annotated with a link leading to the corresponding lemma in the
mechanization.





Chapter 2

On Intuitionistic Type Theory

To begin, we first introduce basic concepts of type theory for readers unfamiliar
with the topic.
Type theory is an alternative foundation of mathematics. Usually, set theory is
considered the foundation of mathematics, which means that all theorems, defini-
tions, and proofs are defined and done in the language of set theory. In type theory,
however, we have types and their elements as the primitives. Our particular variant
of type theory is the Calculus of inductive Constructions [3] (CIC), as implemented
in the Coq proof assistant [27].
This type theory is dependent and features a single type P of propositions, and an
infinite hierachy of type universes T1 : T2 : T3 : . . .. (Indices are omitted wherever
possible.) The internal language of CIC actually is a functional programming
language, used to write definitions, propositions, and proofs. Propositions are
represented by types (specifically, of type P), while proofs are programs of said
type, following the Curry-Howard isomorphism [15]. The fundamental statement
is that of type assignment: x : T describes that x is of type T . For example, 1 : N : T1

means that 1 is an element of type N, the type of natural numbers. N itself has type
T1, the (first) type of types. Both 1 and N can furthermore be defined using the
language of CIC, as is demonstrated shortly.
To continue this example, a statement like ∀xy : N.x+y =N y+x has type P, making
it a proposition. The statement x =N y : P also is a type, specifically the type of
proofs that x : N and y : N are identical. + is a function of type N→ N→ N, which
is defined in the internal language of CIC. If we nowwanted to prove that statement,
we would have to find a term P in the internal language of CIC inhabiting that type.
Such a term P would be a function taking two numbers and yielding a proof that
these two given numbers are equal.1 We then say that P : (∀xy : N, x+ y = y + x),

1The actual program proceeds by induction, case elimination, rewriting using = and the definition
of +, all of which can be done using the internal language of CIC.
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or that ∀xy : N, x+ y = y+ x is inhabited. If we consider it a proposition, we simply
say that ∀xy : N, x+ y = y + x holds.

In order to check whether a proof is valid, we can check whether it has the required
type. This type checking mechanism is implemented in the Coq proof assistant
software, allowing us to have our proofs checked by a computer. However, this
requires us to carry out all our proofs with the utmost level of rigor, forcing us to
formally prove every utility lemma, including seemingly trivial ones. We consider
this desirable, since we can be certain our proof is valid.

In the next section, we formally define the types representing propositions. It
turns out that CIC, using these definitions, implements intuitionistic logic. This
means that the law of excluded middle LEM := ∀P : P.P ∨ ¬P does not hold, as
well as several equivalent statements like double negation elimination DN := ∀P :

P.¬¬P → P . Intuitionism is often considered “natural” in type theory, in particular
because LEM, when interpreted as a computer program, denotes a program which
“decides”, for any propositionP , whether or notP is true. Such a program, of course,
does not exist (by the very results investigated in this thesis) and so type theorists
do not assume LEM or DN. This kind of logic is also called constructive, since all
existence proofs (i.e. proofs of statements with an existential quantifier) must be
done by explicitly constructing a witness – the common approach of showing that
non-existence is contradictory implicitly relies on DN.

Often, it is insightful to compare this constructive approach to one where LEM holds.
Since LEM is consistent and independent in CIC, we could assume it as an axiom,
and change the properties of our type theory. We call such a type theory classical
meta-theory, in contrast to the intuitionistic meta-theory we use by default.

To summarize, we try to re-implement mathematics by defining a special “program-
ming language” along with a type system where types are powerful enough to
denote propositions or arbitrary mathematical constructions. Programs of such
types are then understood as proofs. The typing system is implemented in the proof
assistant Coq, which can then mechanically verify our proofs, allowing us to be
certain that our proofs are correct. The proof assistant also comes with a standard
library of types, which we re-iterate in this chapter.

We refer to the practice of implementing such proofs in the Coq proof assistant as
mechanization. Most proofs presented in this thesis are mechanized in Coq. Thus,
we often only give a high-level overview of the proof ideas, while embedding a link
to the actual mechanization in the digital version of this thesis. We encourage the
reader to refer to this mechanization for more specific proof details.
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2.1 The Types of CIC
Types in CIC are defined inductively, by giving a collection of constructors which
can be used to construct points of said type. For example, N, the type of natural
numbers, has the constructors 0 : N representing 0, and S : N → N representing
the successor. An inductive type is the smallest type admitting these constructors,
making N the smallest type having 0 and a successor function, which makes this
definition of N analogous to the definition implicit in Peano Arithmetic. Smallest
means that we can perform proofs by induction on that type. We sometimes denote
such a type using a BNF, i.e. n : N ::= 0 |S n. For certain types, in particular
inductive predicates, we sometimes give the constructors in inference rule notation.
For N, this might look like the following:

0
0 : N

n : N
S
S n : N

This mechanism is strong enough to define all “base” types we need for this thesis.
Additionally, we have the fundamental type of dependent functions ∀x : A.T x. Its
inhabitants are functions taking an argument of typeA, and yielding a result of type
T x, where T can be defined using x : A. A special case is the type of non-dependent
functions A→ B, where B does not depend on the argument. To define functions
and construct proofs, we need a functional programming language, which is the
λ-calculus, extended with mechanisms for induction and recursion on inductive
types. Note that types also are terms in CIC, hence ∀(x : A).T x also is part of its
syntax.

Using this, we can define additional types needed for the remainder of this thesis.
We have 0 : T, which is empty (it has no constructors), and 1 : T, which has a
single constructor ? : 1. For a : A, b : B, we furthermore have types A×B : T and
A + B : T, where A × B is the type of pairs (a, b), and A + B is the sum type, or
disjoint union, representing either an element of A or an element of B, constructed
using either i1 a : A + B or i2 b : A + B. Even stronger, we have dependent pairs∑

x:A T x, where the definition of T can use x : A. Inhabitants of this type are tuples
(x, y) where y is assigned a type T x depending on x.

There is an important distinction between types living in T, and types living in P,
the type of propositions, namely that propositions are “computationally irrelevant”.
For example, if we write a program 1 + 1→ N, the program can case-analyze the
input of type 1 + 1 when computing the output. If, however, we consider a “mirror
version” 1 ∨ 1, where A ∨ B : P is defined similar to A + B except that it lives in
P, then the program may not case-analyze the input in general. There are multiple
exceptions to this rule, the most important one is that this case-analysis is allowed
if the output is also “computationally irrelevant”, or if the input is syntactically
irrelevant.
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We define propositions mirroring our previous types, in particular ⊥ for 0, > for
1, A ∧ B for A × B, A ∨ B for A + B and ∃x : A.T x for∑x:A T x. These types
correspond to the well-known logical connectives suggested by the notation. As
mentioned, we consider such a proposition “true” when it is inhabited.
We already adressed that in our meta-theory neither LEM nor DN hold. In this
thesis, we do not assume LEM, DN, or any other axioms unless explicitly mentioned.
All our main theorems are proven without assuming any axioms.
2.2 Derived Notation
We already introduced N, the type of natural numbers. L (A) for A : T is the type
of finite lists over elements of A, constructed from either the empty list []A : L (A),
or by prepending a value x : A to an already existing list l : L (A), denoted as
(x :: l) : L (A). We often write down lists as [x1, x2, . . . xn], denoting the list x1 ::

x2 :: · · · :: xn :: []. We write a ∈ l if a : A is an element of the list l : L (A), and
l1 ⊆ l2 if ∀a ∈ l1.a ∈ l2. While this notation mirrors set notation, note that lists are
finite ordered collections, whereas sets are unordered collections where elements
can occur at most once. We also omit the index []A whenever possible.
An important function on lists is map : ∀AB : T.(A→ B)→ L (A)→ L (B), which
applies a function f : A → B to every element of a list. Furthermore, we need
concat : ∀A : T.L (L (A)) → L (A), which concatenates a list of lists into a single
list. We also abbreviate map f l as [f a | a ∈ l]. The composition concat (map f l) is
usually known as flatmap to functional programmers.
The type B ::= tt | ffmodels “booleans” representing either true or false. They are
a datatype and not used to assign “truth” to propositions.
To continue, we have O(A), the type of optionals over A. The inhabitants are either
∅ : O(A), representing the absence of an a : A, or dae, representing the presence of
such an a : A. Thus, O(A) has one more inhabitant than A (for finite A).
For n : N, we also use Dn to denote lists of length n. In type theory, lists of fixed
length n, where n is carried in the type, are known as vectors.
To better describe types, we introduce the following properties:

Definition 2.1 (Properties of types) A type T : T is:

• empty iff it is not inhabited, i.e. if T → ⊥ is inhabited.

• listable or finite iff there is a list l : L (T ) such that ∀a : T, a ∈ l.

• countable iff there is an injective relation R : T → N→ P.

• countably infinite if there is a bijective relation R : T → N→ P
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We note that N and L (A) are not listable (for nonempty A), while 0,1,B,O(A),

A× B,A+ B are if A and B are. N is countably infinite, as are lists over A if A is
not empty and countable. 0 is empty.





Chapter 3

Preliminaries

3.1 Synthetic Undecidability Theory
Here, we introduce basic concepts of synthetic undecidability theory, following the
approach of Forster et al. [5].
Usually, computability theory is defined by introducing an explicit notion of com-
putation, usually the Turing machine. One can then prove the usual results, like
the existence of an universal Turing machine or the fact that the halting problem is
uncomputable.
In CIC, this approach is also possible. Since we want to have our proofs checked by
a computer, this approach involves formally specifying every Turing machine (or
equivalent concrete model of computation) used to show a function is computable,
which involves significant work. A closer look at our meta-theory, however, reveals
that every function definable in CIC is computable, since CIC is intuitionistic and
hence admits models where every function is computable. The proof assistant Coq,
which implements a syntactic model of CIC, may1 be such a model, as it allows
one to type-check and execute functions defined in CIC. The peculiarities of CIC’s
typing system even ensure that all functions defined in the internal language are
total, i.e. they always halt.
Thus, since we are already implementing our proofs as programs, it is desirable
to actually implement the programs needed for our (un)decidability proofs in the
same programming language. When we do so, we know our program is actually
computable, and also give a fully rigorous implementation. So, as our goal is to
verify correctness for all programs used in (un)decidability proofs, this approach
suffices. To define decidability, we first need to define problems.
A problem on A is a predicate of type A → P, for A : T. For example, prime :

N→ P, the predicate describing primality, is a problem on N. By P , we denote the
1this is suspected but not formally proven
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complementary problem, defined by P a := ¬(P a). Note that P ↔ P does not hold
in general, since LEM does not hold. We call a : A a yes-instance of some problem
P on A if P a, and a no-instance if ¬P a.

Definition 3.1 (Decidability) A proposition p : P is decidable if there exists a function
f : p+ ¬p. A problem P : A→ P on A is decidable if P a is decidable for all a.

Note that f takes no arguments. Since we used p+ ¬p and not p ∨ ¬p, the resulting
object is not computationally irrelevant and can be used in further computations, as
we would expect from a program “deciding” certain properties. This in particular
implies that, even if we take LEM as an axiom, our definition remains meaningful,
since LEM is defined using the computationally irrelevant types. The type p+ ¬p
can be understood as “either a proof of p, or a proof of ¬p”, and a program can later
inspect which of these alternatives is present. Equivalently, we could define f to
merely output a boolean b : B, and then require that f = tt⇔ p. However, the first
definition is easier to work with. This definition allows us to define an additional
important property of types:

Definition 3.2 (Discreteness) A type A : T is discrete iff for all x, y : A, x = y is
decidable.

Most types introduced so far are discrete, including B,N and lists over discrete
types.
To define undecidability, we consider how we usually show that a problem is un-
decidable: by reducing from another undecidable problem. Remember that when
developing computability theory, one usually first shows that the halting problem
is undecidable using a diagonal argument, and then reduces from it to show other
problems undecidable. Specifying a reduction, in particular a many-one reduction,
usually requires specifying a computable reduction function, and then showing that
this function preserves yes- and no-instances. As explained, we want to write that
function in our existing meta-language, rather than by defining a model of compu-
tation and specifying the function within it. Thus, we define many-one reducibility
as follows:

Definition 3.3 (Many-one reduction) A problem P : A→ P many-one reduces to a
problem Q : B → P iff there is a function f : A→ B such that ∀a : A.P a↔ Q (f a).

Often, we show the equivalence by showing both directions separately. Then, we call the step
P a→ Q (f a) preservation and the opposite direction reflection.

Armed with this definition, we can now verify reductions without reference to a
constructed model of computation because we implicitly use our meta-theory as a

https://www.ps.uni-saarland.de/~hostert/bachelor/coq/Undecidability.Synthetic.Definitions.html#decidable
https://www.ps.uni-saarland.de/~hostert/bachelor/coq/Undecidability.Synthetic.Definitions.html#reduction
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model of computation. However, we still need a suitable definition of undecidability.
While the obvious definition “P is undecidable if it is not decidable” transports
along our definition of many-one reducibility, it is unusable - many problems can
not be shown undecidable.
For example, the statement “there is no decider for the halting problem for Turing
machines” is independent of CIC – it holds in some models, while being invalid in
others. In particular, while all functions definable in type theory are computable, a
model might contain functions which are not definable in that internal language,
and hence can be uncomputable. Thus, there are models containing “deciders” for
the halting problem. As a consequence, we need a different definition. Before we
can state this definition, we need to first define semi-decidability. A problem is
semi-decidable if yes-instances can be found by an unbound search:

Definition 3.4 (Semi-Decidability) A problem P : A→ P onA is semi-decidable iff
there exists a function f : N→ A→ B such that for all a : A, P a↔ ∃n : N.f n a = tt.
Such a function f is called a semi-decider for P . If P is semi-decidable, P is co-semi-
decidable.

Definition 3.5 (Undecidability) A problem P : A → P on A is undecidable iff,
assuming it were decidable, the halting problem for Turing machines would be co-semi-
decidable.

If the semi-decidability of P implies the co-semi-decidability of the halting problem, P is
non-semi-decidable.

This definition captures the usual meaning of undecidability, and in particular is
preserved many-one reductions:

Lemma 3.6 (Many-one reduction soundness) If P : A→ P is an undecidable prob-
lem on A, and Q : B → P a problem on B, and P many-one reduces to Q, then Q is
undecidable.

We stress that the definition of undecidability deviates from the one originally
used by Forster et al. [5]: There, a problem P is undecidable if decidability of P
implies the decidability of the halting problem, whereas here, it suffices to imply
the co-semi-decidability of the halting problem.
Using these basic notions, many problems can be shown undecidable. This thesis
can be understood as part of a larger program, aiming to mechanize undecidability
proofs for many problems. Many such proofs are part of the Coq Library of Unde-
cidability Proofs [6]. This library already mechanizes reductions from the halting
problem to several other problems fromwhich it is easier to reduce, since they do not
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involve arguing the formal semantics of a Turing machine. In particular, the library
contains a mechanization of the undecidability of Diophantine equations [20].
These definitions have some noteworthy consequences whichmight seem surprising
for a classical computability theorist: If a problem P is semi-decidable (witnessed
by f) and co-semi-decidable (witnessed by f), it is not necessarily decidable. This
is precisely because our logic is constructive - for it to be decidable, we would have
to give a terminating function. In a classical meta-theory, we can simply step-wise
probe f and f until either returns tt, which must happen eventually since either
P a or P amust hold by LEM.2

To re-iterate, a proof that some problem P is undecidable (understood as by Defi-
nition 3.5) becomes meaningful only when we consider the meta-mathematics of
intuitionistic CIC. Then, we know that a proof of the undecidability of P contains a
function deriving a co-semi-decider for the halting problem from a decider for P . If
we consider a model of type theory where all functions are executable, this function
also is, and hence the halting problem is co-semi-decidable, which is a contradiction.
This concrete approach is based on ideas from synthetic computability theory by
Bauer [1] and was first used by Forster et al. [5]. It is the basis of the Coq Library of
Undecidability Proofs [6].
3.2 First-Order Logic
First-order logic (FOL) is a formal logic. It has quantifiers, subject to an important
restriction: They only quantify over the individuals of some “domain of discourse”,
and not predicates or functions on that domain.
To define FOL formally, we first need to define signatures, which is used to fix the
admissible “primitive” formulas and terms.

Definition 3.7 (Signature) A signature is a pair of types (F ,P), along with two func-
tions |f |F : N and |p|P : N for f ∈ F , p ∈ P , called the arity of f and p respectively. We
omit the indices since they are clear from the context. We denote the type of all signatures as
Σ.

Example 3.8 (Signature of PA) The signature of Peano arithmetic ΣPA : Σ is the tuple
(FPA,PPA), where F contains the elements 0̇, Ṡ, +̇, ∗̇, and P contains the element =̇. We
have |0̇| = 0, |Ṡ| = 1, |+̇| = |∗̇| = |=̇| = 2.

As mentioned, we use signatures to define the “atomic” symbols usable in FOL.
The signature of PA, the first-order theory of natural numbers, thus contains the
elementary symbols necessary to describe the natural numbers.

2actually, MP (a weaker axiom than LEM that is also consistent and independent) suffices.
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We now define the actual terms and formulas of first-order logic. Terms can be
understood as denoting a value (i.e. an element of the “domain of discourse”), while
formulas denote a statement (i.e. something which may be “true”). In general, we
assume a countably infinite, discrete type V , the set of variables. Suitable examples
are the type of finite lists of characters, i.e. strings, or the natural numbers.

Definition 3.9 (Syntax of FOL) Given a signature (F ,P) : Σ, we define the syntax of
FOL terms and formulas. Terms are given by the following BNF, with v : V

e1, e2 : Term ::= v

| f(e1, . . . , en) f : F , |f | = n

This allows us to define FOL, the type of formulas:

ϕ,ψ : FOL ::= ⊥̇
|ϕ ∧̇ ψ
|ϕ ∨̇ ψ
|ϕ →̇ ψ

| ∀̇x.ϕ
| ∃̇x.ϕ
| p(e1, . . . , en) p : P, |p| = n

We denote ¬̇ϕ as ϕ →̇ ⊥̇ and ϕ ↔ ψ as ϕ → ψ ∧ ψ → ϕ. Additionally, we may denote
p(e1, . . . , en) and f(e1, . . . , en) in infix notation if n = 2.

Formally, these definitions denote inductive types where each possible syntactic category is a
constructor, taking the subformulas as arguments.

Example 3.10 (FOL formulas in PA) Ṡ(Ṡ(0̇)) is a term over PA, as is Ṡ x +̇ (y ∗̇ 0̇).

Formulas of FOL over PA include x =̇ x, ∀̇x.∀̇y.x+̇y =̇ y+̇x, or ∀̇x.(x =̇ 0̇ ∨̇ ∃̇y.x =̇ Ṡy).

Often, we omit the dot above a symbol when giving a FOL formula, as long as it
is clear from the context that the formula should be understood as a FOL formula,
instead of as a statement in the meta-theory.
Since our formulas feature variables and binders for them (namely ∀̇ and ∃̇), we
need to define free and bound variables:

Definition 3.11 (Free variables) A variable v : V is free in ϕ : FOL if it occurs in ϕ
and the occurrence is not bound. An occurrence of x is bound if the formula ψ x occurs in
is part of ∀̇x.ψ or ∃̇x.ψ. If it is bound, then it is bound by the innermost such quantifier.
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Example 3.12 In ∀̇x.(x =̇ 0̇ ∨̇ ∃̇y.x =̇ Ṡy), there are no free variables, since x is bound
by the ∀̇-quantifier and y is bound by the ∃̇-quantifier. In ∀̇x.∀̇x.x =̇ y, x is bound by the
innermost quantifier, while y occurs freely.

We consider two formulas α-equivalent if they are equal up to the naming of bound
variables. For example, ∀̇x.∀̇y.x =̇ y is α-equivalent to ∀̇y.∀̇x.y =̇ x, since we just
consistently renamed x to y and vice-versa. They are notα-equivalent to ∀̇y.∀̇x.x =̇ y,
since the latter has a different “binding structure”. α-renaming describes the process
of changing variables names in an α-equivalence preserving way.
An alternative notion for working with variable names and α-equivalence are de
Brujin indices: In de Brujin form, instead of using named binders and named
variables, a variable is instead a number denoting the amount of quantifiers between
it and its binding site. This notation ismuch harder to read, yet it makesmechanizing
FOL much easier, and hence is used in the Coq formalization. We note that in de
Brujin form, α-equivalent terms are equal.

Example 3.13 (de Brujin indexing) The formula ∀̇x.∀̇y.x =̇ y is represented in de
Brujin notation by ∀̇∀̇.1 =̇ 0. Note that the quantifiers no longer explicitly bind variables: y
is now written as 0 since the quantifier that used to bind y was nearest to the usage of y. x
became 1, since the quantifier that used to bind x is the second-nearest.

An important operation is capture-free substitution, denoted by ϕ[e/x] for ϕ :

FOL, e : Term, x : V . It replaces all free occurrences of x in ϕ by e, such that the
free variables of e remain free at the substitution points. This may involve first
α-renaming the bound variables in ϕ such that free variables of e are not captured.
In de Brujin notation, no renaming is necessary, but indices in emight need to be
adjusted.

Example 3.14 (Capture-free substitution) (∀̇x.x =̇ y)[0̇/y] = ∀̇x.x =̇ 0̇, since we
replace y by 0̇. (∀̇x.x =̇ y)[0̇/x] = ∀̇x.x =̇ y, however, since x does not occur freely.
Importantly, (∀̇x.x =̇ y)[x/y] = ∀̇x′.x′ =̇ x, since the x substituted in must now occur
freely. Hence, we must α-rename the bound x to something else (here x′) to avoid capture.
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Chapter 4

Uniform Diophantine Pair Constraints

The ultimate goal of this thesis – showing the undecidability of various first-order
problems in their minimal version in an efficient way – will be accomplished by
reducing from a source problemwhich has several interesting properties. The source
problem is a certain kind of Diophantine constraint problem, in which all constraints
are defined using the relation ∼1 on pairs of natural numbers. The specific properties
of this relation are key to making all following undecidability proofs feasible.

Definition 4.1 ( ∼) The relation ∼ on N2 × N2 is defined as

(a, b) ∼(c, d) := a+ b+ 1 = c ∧ b2 + b = d+ d

This relation is easy to characterize axiomatically, and this will be possible almost
without reference to + or ·, by re-using the relation itself on “smaller” values. It is
nontheless powerful enough to express all possible Diophantine constraints.
4.1 Defining Equations for ∼

To start, we can express the successor relation x = y + 1 using just 0 and ∼:

Lemma 4.2 (Base; Characterizing equation 1) (a, 0) ∼(c, 0) iff c = a+ 1.

The next characterization is of very high significance, since it captures most of “the
essence” behind ∼while only referring to ∼ itself:

Lemma 4.3 (Step; Characterizing equation 2)

(a, b) ∼(c, d) ∧ b 6= 0 iff (a, b′) ∼(c′, d′) ∧ (d′, b′) ∼(d, d′) ∧ (b′, 0) ∼(b, 0) ∧ (c′, 0) ∼(c, 0)

1This relation was found by Andrej Dudenhefner while trying to find Diophantine constraints that
allow for easy axiomatization in FOL or related logics. Dominik Kirst later helped apply it to FOL
specifically.
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Expressed this way, we can see that this equation defines ∼ using only itself in an
inductive/recursive way. However, the property is better understood by rewriting
with Lemma 4.2, and substituting b, c:

(a, b′ + 1) ∼(c′ + 1, d) iff (a, b′) ∼(c′, d′) ∧ (d′, b′) ∼(d, d′)

This characterization can be found by realizing that ∼ encodes a Gaussian sum in the
pairs’ right-hand components. In particular, if (0, b) ∼(1, d), then d =

∑b
i=1 i. Thus,

if we want to solve (a, b′ + 1) ∼(c′ + 1, d) for d given (a, b′) ∼(c′, d′), we need to set
d := d′ + b′ + 1, which is encoded as (d′, b′) ∼(d, d′) in Lemma 4.3.
Up until Chapter 8, we only use a slightly weaker version of Lemma 4.3:

Lemma 4.4 (Weak Step)

(a, b) ∼(c, d) if (a, b′) ∼(c′, d′) ∧ (d′, b′) ∼(d, d′) ∧ (b′, 0) ∼(b, 0) ∧ (c′, 0) ∼(c, 0)

A third characterizing equation is also only needed for the second part of this thesis.

Lemma 4.5 (Tieback; Characterizing equation 3) (a, 0) ∼(c, d) only if d = 0.

The significance of Lemma 4.5 and the strong version of Lemma 4.3 is that without
them, we would not be able to prove the following lemma. In fact, we could only
show that (a, b) ∼(c, d) implies (a, b)R(c, d), but not vice-versa. Since this weaker
property is sufficient for the next few chapters, we defer until Section 8.2 for a
detailed discussion of this.

Theorem 4.6 (Soundness and Completeness)
Any relationR on N2 × N2 satisfying Lemmas 4.2, 4.3 and 4.5 is equivalent to ∼.

IfR only satisfies Lemmas 4.2 and 4.4, then completeness holds, while soudness does not
necessarily do so anymore: only (a, b) R (c, d)← (a, b) ∼(c, d) can be proven.

We remark that ∼ can alternatively be defined as an inductive predicate:

Definition 4.7 (Inductive ∼)
Base

(a, 0) ∼(a+ 1, 0)

(a, b′) ∼(c′, d′) (d′, b′) ∼(d, d′) (b′, 0) ∼(b, 0) (c′, 0) ∼(c, 0)Step
(a, b) ∼(c, d)

Note that our constructors mirror the Lemmas 4.2 and 4.4. Yet, this relation satisfies
all three characterizing equations. While this seems surprising at first, there is
a deeper reason behind this: As explained in Chapter 3, an inductively defined
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relation can be understood as the intersection of all relations satisfying the properties
induced by the constructors – in our case, these are Lemmas 4.2 and 4.4. Hence,
it is the “smallest” relation satisfying these properties as the constructors are the
only methods for proving this relation. As it is defined using Lemmas 4.2 and 4.4,
it is complete for ∼ (Theorem 4.6), and since it is the smallest relation satisfying
these axioms, it must be at least as strong as ∼. Hence, the inductive definition of ∼ is
equivalent2. To re-iterate, we were able to find a relation equivalent to ∼ by requiring
that it satisfies the weak set of defining equations (Lemma 4.2, Lemma 4.4), and
additionally requiring that it is the “smallest” such relation. This concept is crucial
to the reductions outlined in the following chapters.
Lemma 4.8 ∼ is the smallest relation satisfying Lemmas 4.2 and 4.4.

Thinking about our characterizing equations this way allows us to realize that they
can be understood as constructors and destructors (in the sense that they allow us to
“construct” derivation trees, as well as case-analyze them), allowing us to construct
proofs of (a, b) ∼(c, d) from other proofs of ∼ where a, b, c, d are smaller. In particular,
the first characterizing equation requires c to be the immediate successor of a, and
the second one has b′, the immediate predecessor of b, used where previously b
was used. This property allows one to easily use this relation in proofs by natural
induction on the first or second argument of the left-hand pair. This “structurality”
(along the left-hand pair) is another crucial property of ∼ and its axiomatization,
albeit harder to pin down formally.
Another property that is helpful in the following chapters is the irreflexivity of ∼:
Lemma 4.9 ∀p : N2.¬(p ∼ p)

Havin understood ∼, we can use it to define the decision problem UDPC used as the
reduction source in the remaining chapters of this thesis: The problem will be a list
of equations in several variables, where all equations are defined as using ∼. If such
an equation has a solution, it will be a yes-instance of UDPC. Formally, we define:
Definition 4.10 (Uniform Diophantine Pair Constraints)
A uniform Diophantine pair constraint is a tuple ((x, y), (z, w)), with x, y, z, w ele-
ments of some discrete, countably infinite set of variables V . We say that an assignment ρ :

V → N satisfies a uniform Diophantine constraint ((x, y), (z, w)) iff (ρ x, ρ y) ∼(ρ z, ρw).

We call a list of such tuples an uniform Diophantine pair constraint collection.

Problem 4.11 (UDPC) UDPC is the following decision problem:

UDPC (h : L
(
V2 × V2

)
) := ∃ρ.∀((x, y), (z, w)) ∈ h.ρ satisfies ((x, y), (z, w))

2This is merely an intuition, the actual proof is straightforward but boring.
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As mentioned before, this problem is a Diophantine constraints problem, by which
we mean problems asking for (the existence of) a solution to a list of equations over
N, with various requirements imposed on the shape of the equations. Another such
problem is the following, where we use a slightly different relation as the basis of
allowed equations.

Definition 4.12 (Uniform Diophantine Constraints)
A uniform Diophantine constraint is a triple (x, y, z), with x, y, z elements of some
discrete, countably infinite set of variables V . We say that an assignment ρ : V → N
satisfies a uniform Diophantine constraint (x, y, z) iff

1 + ρ x+ (ρ y)2 = ρ z

We call a list of such triples a uniform Diophantine constraint collection.

Problem 4.13 (UDC) UDC is the following decision problem:

UDC (l : L
(
V3
)
) := ∃ρ.∀(x, y, z) ∈ l.ρ satisfies (x, y, z)

Theorem 4.14 UDC is undecidable, semi-decidable and non-co-semi-decidable.

Theorem 4.14 is already mechanized in the Coq Library of Undecidability Proofs
[6]3, and serves as the starting point for all reductions in this thesis. In particular,
we use it to show UDPC undecidable. Satisfiability of Diophantine constraints in
general was first shown undecidable in 1970 [24], and this is already mechanized
in Coq [20]. Since the undecidability of UDC was shown by reducing from general
Diophantine equations, UDC can express all other Diophantine constraint problems.
4.2 Showing UDPC Undecidable
In order to show UDPC undecidable, we many-one reduce from our source problem
UDC. For this, we need a computable reduction function FUDPC:

code : V3 → L
(
V ′2 × V ′2

)
FUDPC : L

(
V3
)
→ L

(
V ′2 × V ′2

)
code (x, y, z) := [((y1, y1), (y2, y4)), ((y3, y0), (y2, y1)), ((y3, xx0), (z0, x1))]

FUDPC(l) := concat [code p | p ∈ l]

The reduction function FUDPC is computable, since we implemented it in our type-
theortic meta-language. In the remainder of this chapter, we will simply use F
instead of FUDPC. F encodes a collection of uniform constraints by generating
three new pair constraints. Those are created from a new collection of variables

3Andrej Dudenhefner also found it, and mechanized its undecidability.
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V ′ := V × {0, 1, 2, 3, 4}. This can be understood as creating a five new variables
v0, v1, v2, v3, v4 for each old variable v, where formally the new variable vi denotes
the pair (v, i). Since V and V ′ are in computable bijection, we can later translate back
to the original V . These new variables vi are later assigned values solely depending
on the value of v as follows:

i vi
0 v

1 v2+v
2

2 v2 + v + 1

3 v2

4
v21+v1

2

We remark that v2+v2 is always a natural number, because v2 + v is always even. We
now need to show that F fulfills the reduction properties, that is, for some h an
instance of UDC, both UDCh→ UDPC(F (l)) and UDPC(F (l))→ UDC l must hold.

Lemma 4.15 (Preservation) UDC l→ UDPC(F (l))

Proof Here, we are given a solution ρ satisfying the constraint collection l. We
construct a new solution ρ′ assigning values to variables vi according to ρ and the
table above. Showing that this solution fulfills the pair constraints given by F (l) is
straightforward. �

Lemma 4.16 (Reflection) UDPC(F (l))→ UDC l

Proof Here, we are given a solution ρ for the pair constraint collection F (l), and we
need to construct a solution ρ′ for l. The actual solution is given as ρ′ v = ρ v0. It
remains to show that this solution is valid. This follows by basic arithmetics after
unfolding the definition of ∼ in the three pair constraints generated for each original
uniform constraint. �

Lemma 4.17 UDC is many-one reducible to UDPC.

Proof FUDPC is a reduction function by Lemma 4.15, Lemma 4.16. �

Theorem 4.18 UDPC is undecidable.

Proof By Lemma 4.17 and Theorem 4.14. �

We further remark that, as a consequence of Lemma 4.17, UDPC can express all
Diophantine constraints, and hence is as expressive as UDC.
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Chapter 5

Validity

Usually, when modeling a concept in first-order logic, one is guided by an already
existing mathematical structure whose properties one aims to cast into formal first-
order formulas. For example, Peano arithmetic is the first-order theory of natural
numbers, i.e. it aims to allow reasoning about natural numbers in first-order logic.
In this case, given a FOL formula in the signature of PA, we are able to directly
interpret this as a statement about the natural numbers. Formally, we refer to the
natural numbers as a model for PA. The precise definition of a model is as follows:
Definition 5.1 (Tarski Model, Satisfaction) Given a signature (F ,P) : Σ of function
and relation symbols and a type D, an interpretation I is a collection of functions and
relations on D such that:

• For each f : F , where f is a function symbol, there is a function fI : D|f | → D, the
interpretation of f .

• For each p : P , where p is a relation symbol, there is a relation pI on D|f |, the
interpretation of p.

A (Tarski) modelM = (D, I) is a pair consisting of a type D and an interpretation I for
the symbols of a given signature (F ,P) : Σ. Such a model (along with an environment ρ
defining the free variables) satisfies some formula ϕ ifM �ρ ϕ with � defined inductively
as follows:

JẋKρ := ρ ẋ Jf(e1, . . . , en)Kρ := fi(Je1Kρ, . . . , JenKρ)

M �ρ p(e1, . . . , en) := pi(Je1Kρ, . . . , JenKρ) M �ρ ⊥̇ := ⊥
M �ρ ∀̇ẋ.ϕ := ∀y : D.M �ρ[y 7→ẋ] ϕ M �ρ ∃̇ẋ.ϕ := ∃y : D.M �ρ[y 7→ẋ] ϕ

M �ρ ϕ∧̇ψ := M �ρ ϕ ∧M �ρ ψ M �ρ ϕ∨̇ψ := M �ρ ϕ ∨M �ρ ψ

M �ρ ϕ→̇ψ := M �ρ ϕ→M �ρ ψ

To continue our example of PA and N, we can formally define N as a model of PA:
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Example 5.2 Let ΣPA = ({0̇, Ṡ, +̇, ×̇}, {=̇}) be a signature. The interpretation I is
defined in the obvious way, i.e. the interpretation of +̇ is + etc.

Now, we can show that N �ρ ∀̇ẋẏ.ẋ +̇ ẏ =̇ ẏ +̇ ẋ, since unfolding � and J·K transforms this
into ∀ab : N.a+ b = b+ a.

It should be noted that PA admits many models, and the one presented here is just
one of them. In particular, by the Löwenheim-Skolen theorem [22], we can find
models of every infinite cardinality. In a set-theoretic meta-theory, we even find
models where we keep N as the domain of discourse, but have different interpre-
tations1. Yet, we consider the above model “special” since it guides us in finding
formulas and reasoning about truth in PA, which is not surprising, given that PA
was created to formalize the natural numbers. Such special models are colloqui-
ally called “standard models”. It should be noted that a standard model is just
a particular model we as mathematicians working with FOL consider “intuitive”,
it is not necessarily special in a formal way. However, standard models are often
characterized by some higher-order property: Here, N additionally is the smallest
(computable) model of PA.
As noted, though, there usually are many models for a given theory, and it often is
of interest whether a formula is not just satisfied by a certain special model, but by
all possible models. This motivates the following decision problems:

Problem 5.3 (Validity, Satisfiability)
The decision problems VAL, SAT are decision problems on FOL formulas, defined as follows:

VALϕ := ∀Mρ.M �ρ ϕ

SATϕ := ∃Mρ.M �ρ ϕ

Historically, VAL is known as the “Entscheidungsproblem” [13], and was among
the first problems shown undecidable, a result independently obtained by Church
and Turing in 1936 [2, 29], as mentioned in Chapter 1. In a classical meta-theory,
VAL and SAT as well as VAL and SAT are many-one reducible to each other with the
reduction function F ϕ := ¬ϕ, which then suffices to show that both are undecidable
if either is. In our intuitionistic meta-theory, this does not hold – in fact, it requires
LEM. Yet, our definition of undecidability based on the co-semi-decidability of the
halting problem is strong enough for the previously mentioned result to still apply,
but more canonical definitions of synthetic undecidability [1, 5] do not. However,
we have to prove this by directly reducing from UDPC.

1In our meta-theory, this is not possible because these interpretations are uncomputable, and hence
can not be defined.

https://www.ps.uni-saarland.de/~hostert/bachelor/coq/Undecidability.FOL.Util.FullTarski.html#Defs
https://www.ps.uni-saarland.de/~hostert/bachelor/coq/Undecidability.FOL.Util.FullTarski.html#valid
https://www.ps.uni-saarland.de/~hostert/bachelor/coq/Undecidability.FOL.Util.FullTarski.html#satis
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With the general Entscheidungsproblem shown undecidable, special cases of it
gained attention. Already in 1915 [22], it was proven that for a signature with only
unary function and relation symbols, the Entscheidungsproblem was decidable. In
1937, Kalmár [16] completed a program of finding a syntax compression and reduc-
tion chain, by showing that an arbitrary FOL formula over an arbitrary signature
can be transformed into an equivalent formula using only a single binary relation,
and no functions. The result characterizes the decidable and undecidable fragments
of VAL:

Theorem 5.4 ((Un-)decidability of VAL) The problems VAL and SAT for formulas of
a fixed signature (F ,P) : Σ are

1. decidable, if ∀p ∈ P.|p| ≤ 1 and ∀f ∈ F .|f | ≤ 1

2. decidable, if ∀p ∈ P.|p| = 0

3. undecidable, if ∃p ∈ P.|p| ≥ 2

4. undecidable, if ∃f ∈ F .|f | ≥ 2 and ∃p ∈ P.|p| ≥ 1.

Proof

1. By Löwenheim [22].
2. FOL here degenerates into propositional logic, as quantifiers can be ignored.
3. By Kalmár [16]. It suffices to assume |p| = 2.
4. Similar to 3. �

It should be noted that these results hold for general formulas. There are always
special cases (like ⊥, which is a formula in any signature) which are trivially decid-
able, the undecidability results merely state that an algorithm does not exist in the
general case.
We note that a signature with just a single binary relation is not just “small”, but
indeed the minimal relation for which VAL is undecidable: If there were fewer
relations, FOL would degenerate into boolean logic and Theorem 5.4, case 2 would
apply. Further, if the relations in the signature had lower arity, they would be unary
and decidability would follow by Theorem 5.4, case 1.
In this chapter, we give a new proof of case 3, aiming at a short and easily under-
standable version, which does neither require prior model-theoretic work in ZF or
PA, nor a sequence of syntax compression steps. For this, we reduce from UDPC,
since it allows an elegantly short axiomatization in FOL. The following chapters will
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yield even sharper versions of that undecidability result. However, since these are
less approachable, we first present this version as a simpler variant.
The general undecidabilty of VAL is already mechanized in Coq [5], and case 3 of
Theorem 5.4 was mechanized in [17] by transforming formulas of ZF set theory into
a signature with a single binary predicate ∈.
Hence, we now fix a concrete signature (∅, { ≈}) : Σ, where ≈ is our single binary
relation, and proceed to work within this signature unless explicitly mentioned.
This includes that we, from now on, consider VAL and SAT and related problems to
be defined on formulas over this signature.
5.1 Reducing from UDPC

For our reduction, we are given a constraint set h : V2 × V2, and have to construct a
formula FVAL h such that FVAL h is valid in all models if and only if h had a solution –
formally, UDPCh↔ VAL (FVAL h). For this, we construct a first-order formalization
of ∼, which later allows us to translate concrete constraints into FOL. We proceed
by first constructing a standard model, which not only guides our understanding
of the FOL formalization, but is also featured prominently in the reflection step of
the reduction. While we heavily motivate the following definitions by interpreting
them in the standard model, they nonetheless are to be understood as a general
formalization of ∼ in FOL, which captures just enough properties of the standard
model to replay the following construction in any model.
Our standard model is defined over the typeD := N + N2, that is, an element of the
model is either a natural number x, or a pair (a, b). We define our interpretation I
by defining the interpretation of l ≈ r as follows:

l
r y : N (c, d) : N2

x : N x = y x = c

(a, b) : N2 y = b (a, b) ∼(c, d)

The interpretation of ≈ on pairs is unsurprising, as we want to formalize ∼ in FOL.
Furthermore, we need to be able to describe the component of pairs, motivating the
interpretation of (a, b) ≈ y and x ≈ (c, d), which can be understood as projections. The
interpretation of x ≈ y seems useful for constraining two elements of the model to be
equal. However, we do not actually use this in the formula. The only case where
both sides of ≈ are numbers is the case x ≈x, where both sides are already identical.
Hence, many interpretations for ≈ are admissible as well, as long as x ≈x holds for
x : N, i.e. ≈ is reflexive on such elements. This becomes relevant in later chapters,
where we change this aspect of the interpretation to allow encoding various other
properties.



5.1. Reducing from UDPC 27

In order to formalize all properties of ∼, working on the level of ≈ itself is infeasible.
Instead, we define increasingly complex shorthands referring increasingly complex
predicates while keeping our formulas readable. We start by defining N and P ′:

N k := k ≈ k
P ′ k := ¬N k

In our standard model, the predicateN k constraints k to be a natural number, while
P ′ k constraints k to be the opposite, i.e. a pair. This is because equality = is reflexive,
while ∼ is not by Lemma 4.9. Here, in the definition ofN , we find the aforementioned
single use of x ≈ y where x, y are both numbers, which as mentioned already has x
identical to y since they must be the same term.
To continue with the construction of syntactic sugar, we need a predicate P which
does not only constrain its argument to a pair, but to a specific pair with fixed
components. We define:

P k l r := P ′ k ∧N l ∧N r ∧ l ≈ p ∧ p ≈ r

Again, it is easy to verify that P k l r in our standard model is equivalent to k = (l, r).
Given this, we can define a predicate R, which is used to model ∼ itself. While this
might seem unnecessary as we have ∼ already in the interpretation of ≈, we have
no means of explicitly constructing a pair given four elements, hence requiring the
following syntactic sugar:

R a b c d := ∃pq.P p a b ∧ P q c d ∧ p ≈ q

With this, we have all syntactic sugar necessary to build the axioms actually formal-
izing ∼. For this, it suffices to turn the characterizations behind Lemmas 4.2 and 4.4
into axioms. The ones defined in Lemmas 4.3 and 4.5 are not necessary, which
becomes apparent once we have formalized the reduction. We restate Lemmas 4.2
and 4.4 here:

(a, 0) ∼(c, 0) iff c = a+ 1

(a, b) ∼(c, d) if (a, b′) ∼(c′, d′) ∧ (d′, b′) ∼(d, d′) ∧ (b′, 0) ∼(b, 0) ∧ (c′, 0) ∼(c, 0)

To turn the first characterization into a FOL axiom, we need to realize that this
characterization relates ∼ to the already existing linear order on natural numbers.
In FOL, we would have to model this linearly increasing “chain” along with this
property. To do this, we create an axiom which allows us to find, given some k, a
“successor” element k′ for which R k 0 k′ 0. Thus we define Axiom 1 as

AVAL
1 := ∀k.N k → ∃k′.R k 0̇ k′ 0̇
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This axiom may appear very similar to the “successor axiom” of Peano arithmetic,
because it fulfills the same function, allowing us to construct a “chain” of elements
in our model resembling the natural numbers. In our standard model, of course,
these elements are the natural numbers themselves.
The attentive reader might realize that we introduced 0̇ here, which has not been
previously defined. Usually, onewould define 0̇ as a zero-argument function symbol,
so that it can be used in formulas. This is not possible in our case since, in order
to achieve the minimal result, we require a signature without function symbols.
Instead, we use a trick: We proceed to treat 0̇ as if it was a function of arity 0.
Later, when finalizing our reduction function, we make sure to add an outermost
∀-quantifier, binding 0̇. Since we are reducing from VAL, we are later allowed to
instantiate an arbitrary element of the standard model, just as if 0̇ was a function of
arity 0, since the formula would be valid for all interpretations of that symbol.
To continue constructing our axioms, we might consider whether we also need the
other axioms of Peano arithmetic in order to complete our reduction function. It
turns out that we only need a single further axiom of PA2, namely the one stating
that 0̇ is a number. This allows us to write down axiom 2. It should be noted that
further characterization of 0̇ is not necessary. In particular, we do not need an
axiom constraining 0̇ to be the smallest number, since this is not necessary for the
axiomatization.

AVAL
2 := N 0̇

Finally, we need to turn the second characterizing equation of ∼ into an axiom. This
is straightforward:

AVAL
3 := ∀abcdb′c′d′.R a b′ c′ d′ ∧ R d′ b′ d d′ ∧ R b′ 0̇ b 0̇ ∧ R c′ 0̇ c 0̇→ R a b c d

These three axioms are sufficient to formalize ∼ to the degree necessary to construct
a reduction function:

FVAL, code : L
(
V2 × V2

)
→ FOL

FVAL h := ∀0̇.AVAL
1 →̇ AVAL

2 →̇ AVAL
3 →̇ ∃

v∈V(h)

code h

code [] := >̇
code (((a, b), (c, d)) :: h) := R a b c d ∧̇ code h

2In some presentations of PA, this axiom is implicit. Here, it needs to be explicit.
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The reduction function has 0̇ outermostly quantified, which, as mentioned before,
allows us to use 0̇ like a function of arity 0 in the remainder. We then add the axioms
as guard conditions around the remainder of the reduction function. Then, we
encode the constraints: Encoding a single constraint is done using R, and we require
that all constraints hold at the same time, hence using ∧̇. The ∃v∈V(h)-construction
binds a FOL variable for each variable occuring in the constraint collection h. This
is best understood by considering an example:

Example 5.5 For h = [((x, x), (y, x)), ((x, y), (z, y))] a constraint collection, we have:

FVAL h = ∀̇0̇, AVAL
1 →̇ AVAL

2 →̇ AVAL
3 →̇ ∃̇xyz.R xx y x ∧̇ R x y z y ∧̇ >̇

Note that the existential quantifier binds x, y, z, which are the variables used in h.

To proceed with our reduction, we note that since FVAL was implemented in the
meta-language of our type theory, it is computable.
Now, we need to show that VAL (FVAL(h))↔ UDPCh. We start with the reflection
step, since it is easier.
5.2 Reduction Reflection
Lemma 5.6 (Reflection) VAL (FVAL(h))→ UDPCh

Proof For this reduction part, we are given a proof that FVAL h is valid in all models,
and have to find a solution ρ to our constraint problem h. Since FVAL h is valid in all
models, it is satisfied by the standard model for an arbitrary environment (which
does not matter, since FVAL h does not have free variables).
When interpreting FVAL h in our standard model, we specialize 0̇ with 0 : N, and
since the axioms all hold in our standard model, we now know that ∃v∈V(h) code h.
Eliminating this existential quantifier yields a value for each variable, which we
use to construct ρ, the solution to our constraint set. Showing that ρ is a constraint
solution is straightforward by the definition of code , which states that the variables
to which ρ now encodes a solution satisfy the constraints. Thus, we can conclude
UDPCh. �

5.3 Reduction Preservation
This reduction step is much more involved than the previous one. Before, we could
simply use the proof of VAL (FVAL h) and work in a concrete model. Now, we have
to work in an arbitrary modelM = (D, I) (along with an arbitrary environment,
which we again ignore because FVAL h does not have free variables), and show
that M � FVAL h assuming h has a solution. We are thus given a solution ρ to
h, as UDPCh is given, and we can further assumeM satisfies our axioms, so that
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M � ∃v∈V(h) code h remains to be shown. We can assume thatM satisfies our axioms
because they guard the remainder of the reduction function: Since our model is
a Tarski model, if we want to showM � ϕ → ψ, we can assumeM � ϕ to derive
M � ψ. Hence we can assumeM � AVAL

i for 1 ≤ i ≤ 3.
This means that our modelM satisfies the axioms. Apart from this, the model is
arbitrary, and we cannot assume that it satisfies any further properties. Hence, we
are now restricted to using only the axioms, and the fact that ρ is a solution to h. To
begin this proof, we start by finding the elements in our model corresponding to
natural numbers. For this, we define a data structure called “chain”:

Definition 5.7 (Chain) A chain up tom : N is a function f : N→ D such that

• f 0 = 0̇

• For all n < m, we have R (f n) 0̇ (f (n+ 1)) 0̇.

If fn = d, then d represents n.

The function f defining a chain yields the representation for numbers n in the model
D. Since we construct it inductively, we only construct chains up to some upper
boundm. This upper bound is later chosen as the highest number in ρ, the solution
to h. The first property of a chain defines that the chain starts at 0̇, which can be
understood as requiring that the 0̇ actually represents 0, which is necessary for the
other axioms to “work properly”. The second one requires the chain to be consistent
with the ordering of the natural numbers: If n + 1 = m, then f m must be the
successor of f n in the model.
Note that in the definition of a chain, we require f 0 = 0̇, which is not well-formed,
since f 0 is an element of our model D, while 0̇ is part of the syntax of FOL terms.
Formally, the statement should be f 0 = J0̇K. However, since the remainder of this
proof involves working within the model, we now start to omit J·K and � when
describing points in and properties of the model.
The defining properties of a chain suffice for showing that all the elements contained
in a chain actually are numbers:

Lemma 5.8 Given a chain f up tom and n ≤ m, then N (fn).

Proof For 0, use AVAL
2 . Otherwise, by definition of R. �

In order to give a proof ofM � ∃v∈V(h) code h, we need to first construct a chain:

Lemma 5.9 (Chain construction) Givenm, there exists a chain f up tom.

Proof We proceed by induction onm:
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• m = 0: The chain is given by f n := 0̇. This satisfies both properties, using
Lemma 5.8.

• m = m′+ 1, where f ′ is a chain up tom′ by induction. We apply AVAL
1 to f ′m′

and get d such that R (f ′m′) 0 d 0. We can now define f :

f n :=

{
d n = m

f ′ n otw.
Chain property 1 is shown by induction, and property 2 also is, except for
n = m′, where it is satisfied because AVAL

1 gave us d which already fulfills the
required property. Lemma 5.8 is also needed. �

We now use Lemma 5.9 to build a chain f up to maxv∈V(h) ρv. Then, we can proceed
to proveM � ∃v∈V(h) code h by instantiating the existential quantifiers generated
for each variable as follows: For a variable v, chose f (ρ v)3. The remaining goals are
now of shape R (f (ρx)) (f (ρy)) (f (ρz)) (f (ρw)), for all ((x, y), (z, w)) ∈ h. Finally,
this can be shown using another lemma:
Lemma 5.10 (Chain steps) If (a, b) ∼(c, d), a, b, c, d < m and f is a chain up tom, then
M � R (f a) (f b) (f c) (f d).
Proof by induction on b, with a, c, d quantified:

• b = 0: Then d = 0, c = a + 1. Since a < m and f is a chain, we are done by
chain property 1 and 2.

• b = b′ + 1. By Lemma 4.3, we have c′, d′ such that
(a, b′) ∼(c′, d′) ∧ (d′, b′) ∼(d, d′) ∧ (b′, 0) ∼(b, 0) ∧ (c′, 0) ∼(c, 0)

By applying the IH, we get R a b′ c′ d′ ∧ R d′ b′ d d′. Using an argument similar
to that of the induction base case b = 0, we are able to further show R b′ 0̇ b 0̇ ∧
R c′ 0̇ c 0̇. Thus we can conclude using axiom AVAL

3 . �

With this lemma, we can conclude the complete proof ofM � FVAL h for an arbitrary
M .
Lemma 5.11 (Preservation) UDPCh→ VAL (FVAL(h))

Proof We have ρ, a solution to h, and the fact that our model fulfills the axioms
AVAL

1−3. Thus, we can build a chain f up to maxv∈V(h) ρv by Lemma 5.9. This chain
allows us to give witnesses to the ∃v∈V(h)-construction, namely f(ρ v) for given
v : V . We conclude by Lemma 5.10 for the remaining goals created by code. �

3Rememer that the variables bound by the existential quantifier are the same ones used for defining
h, and hence are bound to values by ρ
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5.4 Conclusion
Our reduction is now complete, VAL is undecidable if the signature has just a single
binary relation.

Lemma 5.12 UDPC is many-one reducible to VAL, even when restricted to formulas with
a single binary predicate.

Proof FVAL is a reduction function by Lemma 5.6, Lemma 5.11. �

Theorem 5.13 VAL is undecidable, even when restricted to formulas with a single binary
predicate.

Proof By Lemma 5.12 and Theorem 4.18. �

Lemma 5.14 UDPC is many-one reducible to SAT, even when restricted to formulas with
a single binary predicate.

Proof Using F ′ ϕ := ¬(FVAL ϕ) as reduction function. �

Lemma 5.15 SAT is undecidable, even when restricted to formulas with a single binary
predicate.

Proof By Lemma 5.14 and Theorem 5.13. �

5.4.1 Remarks on The Models of FVAL(h)

We only formalized the characterizing equations Lemma 4.2, Lemma 4.4 of ∼ as
first-order axioms in our model. Due to Theorem 4.6, any relation R satisfying
these axioms can be shown complete but not sound – we can show that (a, b)R(c, d)

must hold if (a, b) ∼(c, d) while the other direction may not. In this reduction, this is
sufficient, since for Lemma 4.16, we are given concrete solutions (a, b) ∼(c, d), which
we have to reflect into our model.
For Lemma 4.15, we had to show the inverse direction, which we did by specializing
with the finite model. On a more abstract level, this works because we are reducing
towards VAL: For a formula ϕ to be valid, it has to be satisfied by all models, and
hence also by a model where “the fewest” statements are true. While an arbitrary
relation R satisfying Lemma 4.2, Lemma 4.4 can relate numbers not related by ∼, if
we consider the intersection of all such relations, the resulting relation is equivalent
to ∼ by Lemma 4.8. The problem VAL now requires a formula to hold in all models,
which means that a formula is only valid if it is in the intersection of all sets of true
statements for each model. Hence, R, our direct first-order translation of ∼ only
needs to satisfy Lemmas 4.2 and 4.4 – since we are reducing towards VAL, we later
insert a model where R is the smallest relation satisfying these axioms. This model
is precisely the standard model, since there, R is interpreted as ∼. This implies that
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our standard model actually has a special property, namely that it is the “strongest”
model.
If we just consider a single arbitrarymodel ofFVAL h, we can see thatFVAL h contains
elements corresponding to the natural numbers, as well as elements resembling
their pairs. It may contain multiple elements representing a single number, spurious
elements which behave unlike any pair or number, or numbers behaving similar to
non-standard numbers known from the non-standard models of PA. Furthermore,
as mentioned, the relation R a b c d, while true whenever a, b, c, d represent numbers
from a single chain satisfying ∼, it may also be true for numbers for which ∼ is not.
Indeed, we can easily imagine a model where R a b c d is always true.
5.4.2 Remarks on The Coq Mechanization
In Coq, wemodel FOLwith de Bruijn indices, andUDPC also uses indices as variable
names, which make mechanizing F h rather tedious since all formulas need to be
given in de Brujin form. However, FVAL, we can “re-use” the indices defining h
when constructing∃v∈V(h), so that we just generate 1+max h existential quantifiers,
which is much simpler than properly pairing FOL and UDPC variables. This re-use
later requires subtle ∃-instantiation helpers, so that we can properly inject the correct
values into the variables bound by ∃. Furthermore, we have to track the index of 0̇,
which is outermostly quantified, so that it is referred to correctly. Furthermore, one
has to re-state the notational shorthands as statements inM , something we glossed
over here by simply re-using the notation. For instance, N k as a FOL formula and
N k as a statement about k : M are actually different, and this is explicit in Coq.
One then writes several elimination helpers to ease transitioning from one to the
other, which is straightforward but tedious.
We considered using the tools developed at this chair [14] in order to ease writing
formulas with de Bruijn indices. However, this is infeasible for several reasons. First,
our reduction formula “re-uses” the indices used to define h, and transitioning
from them to named binders to de Bruijn indices makes mechanizing the reduction
even more tedious not just because there is an additional translation step, but also
since one has to be careful to not shadow identically named variables. Furthermore,
the mentioned tools are only designed for formulas with a static binding structure,
whereas we have a variable number of ∀-quantifiers, parameterized by the indices
in h.





Chapter 6

Minimizing The Logical Fragment

In the previous section, we showed VAL and SAT undecidable for a minimal version,
where there is just a single binary predicate. However, there is more than one
axis along which one can minimize a formula, and characterizing VAL or SAT into
decidable and undecidable fragments along these axes is also highly interesting.
In this section, we proceed to analyze whether VAL and SAT are undecidable when
minimizing the logical fragment, that is, the number of logical connectives we can
use, in a way similar to howweminimized the number of atomic predicates required
for FOL.
Until now, we defined FOL with falsity ⊥, the binary connectives ∧,∨ and→, and
the two quantifiers ∀ and ∃. These connectives define the “full logical fragment”. A
particularly interesting restricted set of logical connectives is the following:

Definition 6.1 (Forall-implicative fragment) If a formula uses only ⊥, the logical
connective→ and the ∀-quantifier, as well as symbols from the signature, it is said to be
within the ∀,→,⊥-fragment.

Definition 6.2 (Negation) If a formula in the ∀,→,⊥-fragment does additionally not
contain ⊥, it is said to be the ∀,→-fragment. In general, a formula without ⊥ is in a
fragment without negation.

Example 6.3 The formula ⊥ → ⊥ is in the ∀,→,⊥-fragment (with negation), while
∀ab.a ≈ b → b ≈ a is in the ∀,→-fragment. The second formula is also in the ∀,→,⊥-
fragment, since the fragments only limit the number of usable symbols, without requiring
that all usable symbols actually are used.

In this section, we investigate whether VAL and SAT in the aforementioned minimal
case are still undecidable when restricted to the ∀,→,⊥-fragment, with or without
negation.

https://www.ps.uni-saarland.de/~hostert/bachelor/coq/Undecidability.FOL.Util.Syntax.html#FragmentSyntax
https://www.ps.uni-saarland.de/~hostert/bachelor/coq/Undecidability.FOL.Util.Syntax.html#falsity_off
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6.1 Results in Classical Logic
6.1.1 Forall-Implicative Fragment

In classical logic, VAL and SAT are easily shown undecidable in the reduced logical
fragment by performing a double negation translation. The translation (·)N , first
used by Gödel [12] and Gentzen [10]1 is sometimes specified as follows:

Definition 6.4 (Double negation translation)

(⊥)N := ⊥ (p(e1, . . . , en))N := ¬¬p(e1, . . . , en)

(ϕ ∧ ψ)N := ¬((ϕ)N → ¬(ψ)N ) (ϕ ∨ ψ)N := ¬(ϕ)N → ¬¬(ψ)N

(ϕ→ ψ)N := (ϕ)N → (ψ)N

(∀x.ϕ)N := ∀x.(ϕ)N (∃x.ϕ)N := ¬(∀x.¬(ϕ)N )

We remind that ¬ϕ is a shorthand as ϕ → ⊥, which is expressible in the ∀,→,⊥-
fragment.
Different authors use different versions of this translation, because they aim to reduce
into differently defined fragments. This particular translation has the property that
if ϕwere provable using a classical proof system, then (ϕ)N would be provable using
an intuitionistic proof system. This result in particular has been also mechanized by
Forster et al. [5]. Thus, if our meta-theory was classical, we could simply reduce
from VAL over the full fragment to VAL over the reduced fragment, using (·)N as our
reduction function. However, since our meta-theory is intuitionistic, this does not
work, because (ϕ)N does not necessarily imply ϕ, especially not if ϕ is undecidable.
In order to work around, this we first have to explore ways to eliminate ⊥.
6.2 ⊥ Elimination
The Friedman A-Translation is another transformation of FOL formulas, which was
originally used by Friedman [8] to prove certain conservativity properties between
PA and Heyting arithmetic (i.e. intuitionistic PA). On a high level, one replaces ⊥
with some formula B and adjoins this to all atomic predicates.

Definition 6.5 (Friedman translation)

(⊥)B := B (p(e1, . . . , en))B := B ∨ p(e1, . . . , en)

(ϕ ∧ ψ)B := (ϕ)B ∧ (ψ)B (ϕ ∨ ψ)B := (ϕ)B ∨ (ψ)B

(ϕ→ ψ)B := (ϕ)B → (ψ)B

(∀x.ϕ)B := ∀x.(ϕ)B (∃x.ϕ)B := ∃x.(ϕ)B

1Gentzen’s translation embeds into the ∀,∧,⊥-fragment.
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It can be shown that (ϕ)ψ is equivalent to ϕ ∨ ψ, as long as the atomic predicates
fulfill certain properties (notably, they must be decidable), and as long as no free
variables of ψ are captured.
6.2.1 Translations in Intuitionistic Logic
In classical logic, as well as in our intuitionistic meta-theory, we can quickly see that
SAT for formulas without falsity is decidable, because any formula without ⊥ is
satisfied by a trivial model consisting of a single element ?, where all predicates are
always interpreted as true.
As mentioned, we can easily translate our reduction function into the ∀,→,⊥-
fragment when working in a classical meta-theory. Eliminating ⊥ becomes possible
for VAL.
In our iniuitionistic logic, we can not apply these results directly. However, we can
still modify our actual reduction formula in ways inspired by these two translations,
in order to still transfer it into the ∀,→-fragment.
6.3 Translating Our Reduction
We now proceed to adapt FVAL h into the ∀,→,⊥-fragment. For this, we will rewrite
FVAL such that the overall structure remains the same, while locally eliminating ⊥
and unwanted logical connectives. We end up with the following new notational
shorthands, which replace the old shorthands from the last chapter.

⊥w := c1 ≈ c2
⊥s := ∀ab.a ≈ b
¬wϕ := ϕ→ ⊥w
N k := k ≈ k
P ′ k := N k → ⊥s

P k l r ψ := P ′ k → N l→ N r → l ≈ p→ p ≈ r → ψ

R p q a b c dψ := P p a b (P q c d (p ≈ q → ψ))

Mirroring the Friedman translation, we define a replacement for ⊥. However, we
actually define two replacements: ⊥s and⊥w. The reason is that⊥s is interpreted as
⊥ (actual falsity) in our standard model. ⊥w, however, is not interpreted as falsity in
the standard model, instead, it becomes an interpretation which allows us to escape
a double-negated context, as becomes apparent shortly. This kind of translation was
already used by Forster et al. ([5], see Definition 3.15) to reduce from classical to
intuitionistic provability. It is likely that all usages of ⊥s could be replaced by ⊥w,
however, we do not do so since it only makes mechanizing the reduction harder.
Using⊥w, we also define ¬w mirroring the original ¬. We use strong falsity to define
P ′, because using strong falsity eases working with the statement P ′ in the standard
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model, where we can actually show that P ′ p is interpreted to mean that p is a pair.

ForP , we add a another argumentψ. This is an artefact of an implicit double negation
translation – previously, we usually had P appear as a condition of an implication.
Because P was defined as the conjunction of several statements, we now build an
implication chain which has all these statements as preconditions. This implication
chain is attached to a consequence ψ, which is then implied by the preconditions.
In total, our new statement P n l rϕ is equivalent (modulo translations) to the old
statement P n l r → ϕ.

A similar construction happens forR, which also has an additional argument ϕ used
in the same way. Furthermore, R previously bound p, q using existential quantifiers.
Now, we have to translate away existential quantifiers, so we remove them from
R and require that p, q are aready appropiately quantified and merely passed into
R. This allows us to eliminate existential quantifiers in preconditions by turning
them into ∀-quantifiers. For example, a formula like (∃p, p ≈ 0̇)→ ψ is equivalent to
∀p, p ≈ 0̇→ ψ (assuming p is not free in ψ), which is a formula in the ∀,→-fragment.
Because we want to avoid as many double negations as possible, we aim to use these
“alternative” translations as often as possible.

AVAL⊥
1 := ∀k.N k → ¬w∀pqk′.R p q k 0̇ k′ 0̇⊥w

AVAL⊥
2 := N 0

AVAL⊥
3 := ∀abcdb′c′d′p1 . . . p8.R p1 p2 a b

′ c′ d′

(R p3 p4 d
′ b′ d d′

(R p5 p6 b
′ 0 b 0

(R p7 p8 c
′ 0 c 0

(¬w∀p9p10.R p9 p10 a b c d⊥w))))

Here, we define the necessary axioms. Axiom 2 remains unchanged. Axiom 1
undergoes a slight change because it now has to quantify p, q used for R. Here,
we can not avoid a double negation, as we have to translate an ∃-quantifier on the
right-hand side of an implication. The changes for axiom 3 are similar, except that
we now additionally need to quantify the 10 pairs which previously were implicitly
quantified in R. For eight of them, we can avoid introducing a double negation.
These ten pairs p1 . . . p10 were previously quantified inside the old R. Now, the new
R requires us to quantify them seperately, and to pass them to the R. This has the
benefit of allowing us to reduce the amount of double negations required. Apart
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from adapting to the old syntactic sugar, the axioms remain similar.

F⊥, code : L
(
V2 × V2

)
→ FOL

F⊥ h := ∀0̇ c1 c2.AVAL⊥
1 → AVAL⊥

2 → AVAL⊥
3 → ¬w ∀

v∈V(h)

code h

code [] := ⊥w
code (((a, b), (c, d)) :: h) := ¬w(∀p1p2.R p1 p2 a b c d⊥w)→ code h

The reduction function on a large scale still works by prefixing the axioms to an
∃v∈V(h)-construction. Of course, we must now replace the ∃with a ∀-quantifier over
the same variables. When translating the constraints in h, we can again be clever
and avoid additional double negations.
Apart from that, we have two new outermostly quantified constants, c1 and c2,
which are used similarly to 0̇. They are used to define ⊥w, which is later interpreted
as UDPCh in our standard model, allowing us to “escape” a double-negated context
once, and is thus crucial to allow this proof to be valid in our intuitionistic meta-
theory.
We now change the previous standard model, adjusting the interpretation of x ≈ y
for x, y : N:

l
r y ∈ N (c, d) ∈ N2

x ∈ N x = y ∨ (x = 0 ∧ y = 1 ∧ UDPCh) x = c

(a, b) ∈ N2 y = b (a, b) ∼(c, d)

By exploiting additional encoding space left undefined by F⊥ h, we are able to fit
UDPCh into the model, where it becomes the interpretation of ⊥w, as mentioned.
This underlined addition for 0 ∼ 1 is the only change.
In the actual reduction, we still need to show VAL (F⊥(h))↔ UDPCh. The reflection
step (Lemma 6.6) needs only slight changes, yet these are the most significant. The
preservation step (Lemma 6.10) remains the same on the large scale. Of course, we
must adapt to the introduced double negations. While this is easy in theory, it often
leads to unintuitive, double-negated goals, making the proof hard to understand in
practice.
6.3.1 Reduction Reflection
Lemma 6.6 (Reflection) VAL (F⊥(h))→ UDPCh

Proof Previously, to prove this step, we instantiated our standard model into the
proof thatF h is valid in all models, the remaining extraction of a solutionwitnessing
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UDPCh then was straightforward. Now, we are working with a double-negated,
negation-eliminated formula. If we had not eliminated ⊥ by replacing it with ⊥w,
we would not be able to actually extract a solution from ¬w∀v∈V(h) code h, because
we only have a proof that the non-existence of a solution is contradictory, which is
not equivalent to an actual solution in intuitionistic logic, as UDPCh is not decidable.
However, by now instantiating c1 := 0, c1 := 1, we have (M � ⊥w) ⇔ UDPCh,
which is our goal in this situation. Thus, we are able to escape the double-negated
context, and it remains to show that ∀v∈V(h) code h, which again is straightforward.

�

The mentioned “escape” is very subtle, so we explicitly explain it now: At that point,
we know that in our standard model,

(
∀v∈V(h) code h

)
→ ⊥w. Since in our standard

model, ⊥w ⇔ UDPCh holds by definition, we can apply this so that ∀v∈V(h) code h

remains to be shown. To prove this, we first introduce the ∀-quantified variables.
Now code h remains to be shown. Notice that this is just an implication chain where
the consequent is ⊥w again, and thus is equivalent to UDPCh. The antecedents
simply require the variables previously bound by ∀ fulfill the constraints of h. Thus,
we can recover a solution for h from this.
We strongly suggest the reader inspect the mechanized version of this proof for
further details.
6.3.2 Reduction Preservation
The changes for this part of the reduction are minor – adjusting the proof to the
double-negated statements is almost mechanical, yet still tedious. In particular, the
intermediary goals one has to prove now are unintuitive, since the entire context is
double-negated. We shortly state the the double-negated versions of the key lemmas
from the previous reduction in Section 5.3:

Lemma 6.7 (Lemma 5.9 for the minimal fragment)
Letm : N. To show ⊥w, it suffices to show ∀f.(f is a chain up tom)→ ⊥w.

Lemma 6.8 (Lemma 5.10 for the minimal fragment)
If (a, b) ∼(c, d), a, b, c, d < m and f is a chain up to m, then showingM � ⊥w requires
showingM � ∀pq.R p q (f a) (f b) (f c) (f d)⊥w

The proofs of these lemmas closely mirror the ones for their original versions, except
that now significant parts of them work in double-negated contexts.
Furthermore, the utility lemma that previously allowed instantiating ∃v∈V(h) ϕ is
now changed to allow specializing ∀v∈V(h) ϕ, which now occurs as a hypothesis
instead of inside the goal:
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Lemma 6.9 (∀ specialization)
If σ : V →M andM �ρ ∀v∈l ϕ for some l : L (V), thenM �ρ′ ϕ, where

ρ′ v :=

{
σ v v ∈ l
ρ v otw.

In total, we are able to conclude that the new formula is still valid:

Lemma 6.10 (Preservation) UDPCh→ VAL (F⊥(h))

6.4 Conclusion
In summary, we are able to additionally show that VAL is undecidable even if the
formulas are required to be in the forall-implicative logical fragment without nega-
tion. Our old reduction function could be adapted using well-known translations.
We thus get sharper versions of the lemmas proved in the previous chapters:

Lemma 6.11 UDPC is many-one reducible to VAL, even when restricted to formulas with
a single binary predicate over the forall-implicative fragment without negation.

Proof Similar to Lemma 5.12, except for the changes outlined in this chapter. �

Theorem 6.12 VAL is undecidable, even when restricted to formulas with a single binary
predicate over the forall-implicative fragment without negation.

Proof By Lemma 6.11 and Theorem 4.18. �

Lemma 6.13 UDPC is many-one reducible to SAT, even when restricted to formulas with
a single binary predicate over the forall-implicative logical fragment.

Proof Using F ′ ϕ := ¬(F ϕ) as reduction function. �

Lemma 6.14 SAT is undecidable, even when restricted to formulas with a single binary
predicate over the forall-implicative logical fragment.

Proof By Lemma 6.13 and Theorem 6.12. �

We remark that the the reduction function for F⊥ uses just a single ⊥, which im-
plies that SAT becomes undecidable as soon as the allowed formulas contain just a
single ⊥.
We note that these results are minimal along several axes. Due to Theorem 5.4,
having a single binary predicate is minimal. Furthermore, the ∀,→-fragment is also
minimal (though not necessarily the minimum, since the ∀,∧-fragment might also
be): If one further disallowed the use of the ∀ quantifier, the resulting formulas
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would be formulas of predicate logic, which is decidable. Disallowing the use of the
∧ logical connective would cause the resulting formula to just be a single predicate
with an optional quantifier prefix, and thus validity would be trivial since it is never
valid. Thus the ∀,→-fragment is a minimal fragment for VAL to be undecidable. For
SAT, as mentioned, the ∀,→,⊥-fragment is necessary, for similar reasons.
A differentminimization axis is the quantifier prefix. We do not considerminimizing
the quantifier prefix, and suspect that the translation presented here actually enlarges
the prefix, compared to the version of Chapter 5.
We further remark that while the translation performed here is suspected to hold in
general, this fact can not be easily shown since it is part of the meta-theory of our
mathematical foundation.
Note that the mechanized version of the outlined proofs instead uses results from
the next chapter. Hence, some lemmas do not exist in the mechanization, or have a
different proof.



Chapter 7

Provability

In the previous chapters, we proved VAL and SAT undecidable. These problems are
defined on models, where one interpretes the FOL formulas as statements about
thesemodels and then considers whether they are true according to the specific rules
and definition of each model. The problem VAL arises naturally if one considers a
formula “true” if it is valid in all models.
However, this definition of truth is somewhat problematic, because it defines truth
by referring to the inner workings of various models. Historically, formal deduction
systems were invented to define “truth” in a formal way, which does not refer to
models at all, instead defining “truth” as a property of a given FOL formula. These
proof systems define the structure of formal proofs by tightly specifying the allowed
deduction rules. Furthermore, proof systems are finitistic, and thus allow expressing
“truth” in comparatively weak meta-theories.
The proof system we are going to use for first-order logic is defined as an inductive
predicate. There are multiple different formulations of proof systems, importantly
Hilbert-style and natural deduction system. We use a natural deduction system,
following Forster et al. [5], mostly because this is already mechanized in the library.

Definition 7.1 (Proof system) We define `, a relation relating lists of FOL formulas
with FOL formulas. A ` ϕ, for A : L (FOL) a list of hypotheses and ϕ : FOL the
consequence, denotes that A proves ϕ. ` is defined as an inductive predicate, hence the
smallest system admitting the following rules:

ϕ ∈ A
Ctx

A ` ϕ
A ` ⊥⊥E
A ` ϕ

A ` ψ A ` ψ → ϕ→E
A ` ϕ

A ` ϕ[y/x] y free in A,ϕ
∀I

A ` ∀x.ϕ
A ` ∀x.ϕ

∀E
A ` ϕ[e/x]

ψ :: A ` ϕ→I
A ` ψ → ψ

Remember that ϕ[e/x] is the capture-free substitution of e for x in ϕ.
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The relation `c additionally admits the following deduction rule:
Peirce

A `c ((ϕ→ ψ)→ ϕ)→ ϕ

The proof system `c is called classical. To disambiguate, ` is sometimes referred to as
intuitionistic. A formula ϕ is (classically) provable if [] `(c) ϕ.

The deduction rules for an intuitionistic deduction system model those of our
intuitionistic meta-theory. The additional deduction rule Peirce adds Peirce’s law as
an axiom to the deduction system, which is equivalent to LEM or double negation
elimination. Note that the deduction system we gave is only useful for the ∀,→,⊥-
fragment. While the remaining deduction rules are mostly straightforward, we omit
them here because they are not relevant to the later reduction.
To understand this proof system, it is best to consider an example.

Example 7.2 (Deduction for (∀xy.x ≈ y)→ ∀x.x ≈ x))
∀xy.x ≈ y ∈ [(∀xy.x ≈ y)]

Ctx
[(∀xy.x ≈ y)] ` ∀xy.x ≈ y

∀E
[(∀xy.x ≈ y)] ` ∀y.z ≈ y

∀E
[(∀xy.x ≈ y)] ` z ≈ z z free in ∀xy.x ∼ y, x ∼x

∀I
[(∀xy.x ≈ y)] ` ∀x.x ≈x→I

[] ` (∀xy.x ≈ y)→ ∀x.x ≈x

For a proof system to be useful, we expect it to have certain properties. The most
important one is soundness: The proof system should only prove “true” statements,
which here means that all provable formulas should be valid. It turns out that our
deduction system is sound:

Lemma 7.3 (Soundness of `)
If [] ` ϕ, thenM �ρ ϕ for allM,ρ.

We note that `c is not sound, since it would imply that LEM holds for all first-order
expressible properties inM , which it does not, since our meta-theory is intuitionistic.
It is sound for all models which “behave classically”, i.e. all models where LEM

holds, as would be the case if our meta-theory is classical. In particular, soundness
of `c is equivalent to LEM.
Besides soundness, proof systems typically have other basic properties like “weak-
ening”, which allow us deduceB ` ϕ fromA ` ϕ ifB ⊇ A. In general, this property
and other related ones are often used during formal deductions in order to re-order
or otherwise adjust the given hypothesis into a nicer representation. Other proper-
ties like cut elimination [9] allow converting proofs into normal forms, which can
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be further analyzed to extract additional information. Such analysis is not necessary
for this thesis.
Another key property of proof systems is completeness: The proof system should
prove all “true” statements. However, not all proof systems are complete, and finding
a complete proof system is often a significant result. For a classical meta-theory, `c
is complete, as first shown by Gödel:

Lemma 7.4 (Gödel’s completeness theorem) In a classical meta-theory, ifM �ρ ϕ
for allM,ρ, then [] `c ϕ.

Proof Due to Gödel [11]. Gödel’s proof uses a Hilbert-style deduction system. �

In our intuitionistic meta-theory, this does not hold. Until now, we have only con-
sidered Tarski models, for which the intuitionistic deduction system can not be
shown complete. Kripke models [19] give a semantics to FOL formulas for which
intuitionistic completeness can be shown (in a classical meta-theory), based on
an additional “reachability relation”. Forster et al. [7] showed that the following
properties hold in our meta-theory:

Lemma 7.5 (Completeness in intuitionistic meta-theory)
For ϕ a FOL formula,MT a Tarski model andMK a Kripke model, we have

MT � ϕ⇒ ¬¬([] `c ϕ)

MK � ϕ⇒ ¬¬([] ` ϕ)

Note that forMK , � denotes Kripke semantics.

We do not further define Kripke semantics here. We note that from every Tarski
model, we can construct a Kripke model such that the formulas satisfied by that
Kripke model under Kripke semantics are precisely the formulas satisfied by the
original Tarski model. Also ` is sound for Kripke semantics, while `c is not (even
when one assumes LEM). While we previously defined validity and satisfiability for
Tarski models, we can adjust them to Kripke semantics, by defining the following
decision problems:

Definition 7.6 (Kripke problems)

kVALϕ := ∀MKρ.MK �ρ ϕ

kSATϕ := ∃MKρ.MK �ρ ϕ

Besides these new decision problems based on Kripke semantics, the deduction
system naturally defines its own problem:
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Problem 7.7 (PRV) The decision problem PRV is defined as follows:

PRVϕ := [] ` ϕ

Additionally, PRVc ϕ := [] `c ϕ is defined analogous.

In a classical meta-theory, PRVc is trivially undecidable, since it is equivalent to VAL.
Thus the same minimality considerations discussed in the previous chapters apply.
In our intuitionistic meta-theory, this proof is not that simple, and we must instead
perform a more complicated reduction in order to show PRV undecidable. We do
this now, by reducing from UDPC.
In order to show PRV undecidable, we re-use significant parts of the VAL reduction
defined in Lemma 6.11. In particular, the reduction function stays the same. So, it
now remains to show that PRV (F⊥ h)↔ UDPCh. We again start with the reflection
step, since it is shorter.
7.1 Reduction Reflection
Lemma 7.8 (Reflection) PRV (F⊥(h))→ UDPCh.

Proof Immediate using Lemmas 6.6 and 7.3. �

7.2 Reduction Preservation
We want to prove UDPCh → PRV (F⊥(h)). The following proof is analogous to
Lemma 6.10 on a large scale. On the small scale, however, there are significant
differences.
To begin, we are no longer working within an arbitrary yet fixed model. Instead,
we are constructing an abstract proof in our deduction system. To be precise, we
have to derive [] ` F h. We then introduce our axioms, turning the statement
into AVAL⊥

1 , AVAL⊥
2 , AVAL⊥

3 ,∀v∈V(h) code h ` ⊥w. In general, since we did a double-
negation translation, most of the following proof formally derives⊥w from the given
assumptions.
The particularities of our deduction system forbid us from using any higher-order
constructs within our proof. In particular, we need to adjust our definition of a
chain. Previously, it was defined as a function which yields elements of the model,
for which we also required certain properties. Now, instead of elements, we would
yield free variables. However, we can no longer “mix” the data and its properties:
All properties these variables fulfill must be part of the list of hypotheses A in A ` ϕ.
This forces us to define our chain in two parts:

Definition 7.9 (Chain for provability)
A proto-chain up to n is a list L (V3) of length k. We canonically name the constituents
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of each pair (n, l, r). Every proto-chain c has a head number head c, which is 0̇ for [] and n
for [(n, l, r), . . .].

The chain hypotheses hyp k c : L (FOL) for a proto-chain c up to k are defined inductively:

hyp 0 [] :=[N 0̇]

hyp (k′ + 1) ((n, l, r) :: cr) :=N n :: P ′ l :: P ′ r

::l ≈(head cr) :: 0̇ ≈ l
::r ≈n :: 0̇ ≈ r
::l ∼ r :: hyp k′ cr

For c a proto-chain and A a list of hypotheses, if hyp c ⊆ A, we say that c is a chain in A.

A variable v represents a numberm ≤ k if Qk cm = v, where Q is defined inductively:

Q 0 [] 0 := 0̇

Qk ((n, l, r) :: c) k := n

Qk ((n, l, r) :: c)m := Q (k − 1) cm

To recapitulate, our chain was used to find the elements of the model representing
natural numbers. Now, we use it to find variables representing natural numbers
instead. To encode that these variables actually represent natural numbers, we
require that the chain hypotheses hold. For a chain (n, l, r) :: cr , the chain hypotheses
generated for (n, l, r) exactly require that r is the pair (n, 0̇), l is the pair (head cr) and
that l ≈ r. This are precisely the conditions imposed by the chain for validity, defined
in Definition 5.7. More formally, the chain hypotheses generated just for a single
pair (n, l, p) are equivalent to the antecedents generated by R l r (head cr) 0̇n 0̇ψ.
Furthermore, the function Q looks up the variable representing a natural number
in the chain. It searches from the back, i.e. the variable representing the number 1
is the furthest back (0 is always represented by 0̇). Defined this way, it is easier to
prove the chain construction lemma, while the lookup function becomes a bit more
tedious to define.
The reason we need a list of multiple hypotheses opposed to just a single one is
that our original definition of a chain is not first-order expressible. Also, we have
eliminated ∧ from our fragment, so we can not use it in our deductive proof. Hence
we need to keep all properties required for a chain as seperate entries in the list
of hypotheses, making working with our chain rather tedious. We considered
alternative representations of the chain, but found that they do not significantly
alter the proof, since managing the chain hypotheses is responsible for most of the
complexity.
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This two-faced definition requires additional utility lemmas, for example, to show
that if c is a chain in A, then any prefix of c also is a chain in A. These lemmas are
tedious to prove since they require one specifying the right hypotheses in A, but
since they are not particularly interesting, we do not give them here, and instead
refer to the Coq mechanization.
While the definition of a chain has changed significantly, the semantic properties
have not, so we still expect to prove a variation of Lemma 6.7 for provability:

Lemma 7.10 (Lemma 6.7 for PRV)
Let A be a list of hypotheses including AVAL⊥

1−3 . If c is a proto-chain up to k, and there is a
proof of hyp k c+A ` ⊥w, then there is a proof of A ` ⊥w.

Proof Similar to Lemma 6.7. �

We can adapt Lemma 6.8 in a similar way:

Lemma 7.11 (Lemma 6.8 for PRV)
Let A be a list of hypotheses including AVAL⊥

1−3 . If (a, b) ∼(c, d), a, b, c, d < k and c is a
chain up to k in A, then, to construct a proof A ` ⊥w, it suffices to construct a proof
(¬∀pq.R p q (Qk a) (Qk b) (Qk c) (Qk d)⊥w) :: A ` ⊥w.

Proof Similar to Lemma 6.8. �

Put simply, we can add the hypothesis that the representations of a, b, c, d are re-
lated by R to the already existing list of hypotheses when proving ⊥w. Then, the
formula (¬∀pq.R p q (Qk a) (Qk b) (Qk c) (Qk d)⊥w) can be understood as holding
in general in this double-negated context.
This completes the most significant part of the reduction. To continue, we again
need several utility lemmas which allow us to manipulate the ∀v∈V(h)-construction,
so that we can specialize all bound variables at once without having to explicitly
track multiple freshness conditions. With these, we are then able to conclude our
reduction, similar to Lemma 6.11.

Lemma 7.12 (Preservation) UDPCh→ PRV (F⊥(h)).

Proof Using Lemmas 7.10 and 7.11, as outlined above. �

7.3 Conclusion
Lemma 7.13 UDPC is many-one reducible to PRV, even when restricted to formulas with
a single binary predicate over the forall-implicative fragment without negation.

Proof F⊥ is a reduction function by Lemmas 7.8 and 7.12. �

https://www.ps.uni-saarland.de/~hostert/bachelor/coq/Undecidability.FOL.Reductions.H10UPC_to_FOL_minimal.html#construct_chain_at
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Theorem 7.14 PRV is undecidable, even when restricted to formulas with a single binary
predicate over the forall-implicative fragment without negation.

Proof By Lemma 7.13 and Theorem 4.18. �

Theorem 7.15 Assuming LEM, PRVc is undecidable, even when restricted to formulas
with a single binary predicate over the forall-implicative fragment without negation.

Proof F⊥ is a reduction function by Lemmas 7.8 and 7.12 and classical soundness.
Undecidability follows by Theorem 4.18. �

Note that we used Lemma 6.6 (validity reflection) to prove Lemma 7.8 (provability
reflection), by using soundness and instantiating the standard model. Similarly,
we can now give an alternate proof of Lemma 6.10 (validity preservation) using
Lemma 7.12 (provability preservation) and soundness. This should not be too
surprising, since we have performed the same construction, except within the ab-
stract deduction system as opposed to within an arbitrary model. Even further, the
abstract proof does not only re-prove the previous results for VAL and SAT, but also
establishes similar results for Kripke semantics:

Lemma 7.16 UDPC is many-one reducible to kVAL, even when restricted to formulas with
a single binary predicate over the forall-implicative fragment without negation.

Theorem 7.17 kVAL is undecidable, even when restricted to formulas with a single binary
predicate over the forall-implicative fragment without negation..

Lemma 7.18 UDPC is many-one reducible to kSAT, even when restricted to formulas with
a single binary predicate over the forall-implicative fragment (with negation).

Theorem 7.19 kSAT is undecidable, even when restricted to formulas with a single binary
predicate over the forall-implicative fragment (with negation).

7.3.1 Remarks on The Coq Mechanization
Formalizing this reduction in Coq was the most tedious, compared to all other
mechanizations in this thesis. As before, we are mechanizing another formal logic
in Coq, which requires a very high level of formal precision and care. Now, we
additionally model first-order provability as an inductive predicate, which further
increases the level of formality required. In particular, compared to Coq’s powerful
system of notations and it’s many-sorted, infinite-order meta-theory, working in
the abstract deduction system is way less comfortable, since it lacks all of these
features. In Coq, there are many “higher-order” tactics used to manipulate the
current proof state. In the deduction system, we must explicitly use the low-level
deduction rules, which makes certain operations very tedious: For example, to

https://www.ps.uni-saarland.de/~hostert/bachelor/coq/Undecidability.FOL.minFOL_undec.html#minProvabilityUndec
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specialize ∀-quantifiers in a hypothesis requires multiple uses of the→I,E-laws, as
well as weakening, in order to even start manipulating the assumptions.
Furthermore, while Coq terms are specified using named binders,1 we have to
again carefully track de Bruijn indices. In particular, working with the mechanized
deduction rules defined in Definition 7.1 often involve index shifts, especially for
the ∀I-rules. While there are additional lemmas which keep the amount of index
shifts manageable, this still requires significant care.
In the Coq mechanization, we use a slightly different definition of proto-chains
up to n. There, we model them as an indexed-inductive data type with n as the
index argument. Working with this index-inductive data type requires the textbook
inversion operators.
Recently, tools supposed to ease working within our deduction system [14] have
been developed. However, these tools could not be used here, since they were not
designed to work with “encapsulated” lists of hypotheses, as would be needed for
hyp k c. The tools could be modified to support such constructions, and we suggest
doing so, since such tools would have made working with the deduction system
significantly easier.

1they use de Bruijn indices internally, but this is not visible to the user



Chapter 8

Finite Satisfiability

In Chapter 5, we defined the decision problem SAT, which askedwhether there exists
a (Tarski) model in which a given formula is satisfied, and showed it undecidable.
Afterwards, we considered how one could sharpen the result by restricting the
admissible formulas. In this chapter, we change the requirements for the model -
notably, we restrict ourselves to finite models. This gives rise to the decision problem
FSAT, or finite satisfiability:

Definition 8.1 (Finite Satisfiability in Classical Logic)
A formulaϕ : FOL over a signature (F ,P) : Σ is finitely satisfied by a modelM = (D, I)

ifD is finite1 and there exists an environment ρ such thatM �ρ ϕ. It is finitely satisfiable
if there exists anM finitely satisfying ϕ.

Finite model theory is the branch of logic which concerns itself with such finite
models and their application. A major result is the undecidability of FSAT, shown
first by Trakhtenbrot in 1950[28]. While Trakhtenbrot only showed this for arbitrary
formulas, it was already known [16] that this result can be reduced to the same
minimal version, where there is only a single binary relation (and no function
symbol). Trakhtenbrot’s original proof of the general undecidability is by reducing
from µ-recursive functions, constructing a formula finitely satisfiable iff the original
function has a root via structural recursion on the definition of the original function.
A more modern version of the proof is given in Libkin’s textbook on Finite Model
Theory [21], which also outlines applications of and reductions using FSAT as a
source problem. Trakhtenbrot’s result has been mechanized in Coq by Kirst and
Larchey-Wendling [18], including the undecidability over the minimal signature,
using a syntax compression chain.
In this chapter, wemechanize a reduction showing FSAT undecidable in theminimal
case, by reducing from UDPC.

1assuming the classical definition of finite, i.e. |D| ∈ N
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8.1 Finite Model Theory in Constructive Meta-Theory
Since we work in a constructive meta-theory, we need to be careful when trying to
capture the definition of FSAT. Importantly, in a classical, set-theoretic meta-theory
we assume any finite model to be given “as a table”: Since the domain is finite, we
consider all atomic relations decidable and all atomic functions computable. As
such, a finite model is completely determined by the number of elements in its
domain, and the (truth) values of the various function and relation symbols applied
to these elements. Furthermore, since the domain is finite, we can decide whether
any first-order formula holds in a fixedmodel, since finite quantification is decidable.
In order to capture these properties, it is not sufficient to merely pose that the type
D representing the domain is finite, we must also require that any atomic relation is
decidable.
This requirement might seem surprising, since we are trying to establish the un-
decidability of FSAT. However, this definition is crucial since otherwise we would
not be able to compute with values from our finite models, which is necessary for
this reduction. Furthermore, this property is desirable because we would otherwise
be able to construct finite models with exhibit surprising behavior. Consider, for
example, a variation of the trivial model:

Example 8.2 (Pathological trivial model) Let M := 1, the type with exactly one
element ?. To define the interpretation of ≈ , it suffices to interpret ? ≈ ?. We define
? ≈ ? := ∀P : P, P ∨ ¬P , i.e. excluded middle.

Without the decidability restriction for ≈ , this model would be acceptable. This
has several downsides - the first being that even in a fixed model, we are unable
to prove either ? ≈ ? or ¬(? ≈ ?), since XM is independent of our type theory – a
highly unintuitive result for a finite model theorist. Furthermore, this model is a
counterexample to the assumption that finite models are (finitely) enumerable: In
particular, we would expect there to only be two trivial models, the one where ? ≈ ?
is true, and the one where ? ≈ ? is false. This model, however, is a counter-example,
and we are not even able to enumerate all models of size 1. Since such computation
and enumeration arguments are a fundamental part of finite model theory, we are
forced to add the decidability restriction to all atomic predicates, if we hope to
establish even basic results from the literature.
Since we already implicitly consider all functions to be computable, we do not
need to add an explicit function computability restriction. In summary, we adjust
Definition 8.1:

Definition 8.3 (Finite Satisfiability) A formula ϕ : FOL over a signature Σ is finitely
satisfied by a modelM = (D, I) ifD is listable, all atomic relations in I are decidable and

https://www.ps.uni-saarland.de/~hostert/bachelor/coq/Undecidability.FOL.FSAT.html#FSAT
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there exists an environment ρ such thatM �ρ ϕ. It is finitely satisfiable if there exists an
M finitely satisfying ϕ. Such anM is called a finite model.

Using this definition, we can now prove that for a fixed finite model, satisfaction is
decidable:

Lemma 8.4 (Satisfaction in fixed model) GivenM a finite model,M �ρ ϕ is decid-
able for all ρ, ϕ.

This gives rise to our decision problem FSAT:

Problem 8.5 (FSAT) A decision problem on first-order formulas, defined as follows:

FSAT(ϕ) := ∃M.M is a finite model for ϕ

This definition is due to Kirst and Larchey-Wendling [18], who used it to mechanize
the aforementioned undecidability results in Coq: They mechanized a reduction
from Post’s correspondence problem to show FSAT over an arbitrary signature
undecidable. Afterwards, they mechanized a chain of signature compression steps
to sharpen this result to the minimal version where the signature only contains
a single binary relation. While this signature compression chain is important on
its own, it introduces significant complexity when trying to understand the actual
proof of the undecidability of FSAT in the minimal version. Our proposed reduction,
however, immediately has already-minimal FSAT as the target problem. We thus
hope to give a more feasible proof of this result.
Apart from these undecidability results, they also mechanized the decidability of
finite satisfication in a fixed model, and the decidability of FSAT without binary
relation symbols, as well as further basic theorems of Finite Model Theory.
8.2 Construction of the Reduction Function
As mentioned, our reduction takes UDPC as a source problem. However, the reduc-
tion itself is composed “inversely” compared to the previous reduction: Before, we
constructed a formula, and had to show that it holds in an arbitrary model assum-
ing the input constraint set had a solution. Now, we are given an arbitrary model
satisfying our formula from which we have to extract a solution to our constraint set.
This requires us to change the reduction function, and all of the axioms. By keeping
our changes minimal, we are able to re-use most of the syntactic sugar.
While we need new axioms, we do not need to find new axioms from scratch.
Careful consideration of the problem at hand shows that, when one understands
the original axioms as “constructors” of the proof (in the sense of constructive
logic), the kind of axioms we require now can be understood as “eliminators”.
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We use this duality, explicitly noted first by Kirst and Larchey-Wendling [18], to
transform our previous axioms. The inductive characterization of ∼ (Definition 4.7)
gives the required constructors. In summary, we need the full version of all three
characterizing equations (Lemmas 4.2, 4.3 and 4.5).
The first axiom to consider is ∀k.N k → ∃k′.(k, 0) ≈ (k′, 0)2. As a constructor, this
axiom allows us to construct successors in an arbitrary model. The “inverse” of
that axiom would be an axioms which allows us to find the predecessor of any
number. However, such an axiom would be unsound, since 0 does not have a
predecessor. Taking this into account, the actual transformation is ∀k′.N k′ → k′ 6≡
0̇→ ∃k.(k, 0̇) ≈ (k′, 0̇). We proceed to abbreviate this as AFSAT

1 .
The attentive reader might notice ≡, which is a previously undefined symbol. We
define a ≡ b to denote that a and b are first-order indistinguishable:
Definition 8.6 (First-Order Indistinguishability) Given a model M of some first-
order theory, two elements a, b of that model are first-order indistinguishable if for all
first-order contexts ϕ[·], ϕ[a]↔ ϕ[b].

While first-order indistinguishability is not immediately first-order expressible, it
can be expressed in special cases like ours, because we only have a single relation
symbol. (In fact, this generalizes to arbitrary finite signatures.) By letting ≡ be
syntactic sugar defined as follows, we can trivially show that a and b are first-order
indistinguishable iff a ≡ b:

a ≡ b := ∀k.a ≈ k ↔ b ≈ k ∧ k ≈ a↔ k ≈ b

We note that≡ is an equivalence relation and decidable for a fixedmodel, since finite
quantification is decidable. We proceed to treat it as “the” equality in a given model,
since actual equality between elements in a model is too fine to be meaningful, as
two different elements might have the same extensional behavior. We could make
this explicit by, from now on, only considering the quotient of our model modulo ≡,
as has been done by Kirst and Larchey-Wendlin [18], but we choose not to, since
this would add significant overhead to the mechanization.
With this definition out of the way, we are able to transform the other axiom, ending
up with this axiom, which we are from now on abbreviating as AFSAT

2 :
∀abcd.(a, b) ≈ (c, d)→ b 6≡ 0̇→
∃b′c′d′.(b′, 0̇) ≈ (b, 0̇) ∧ (c′, 0̇) ≈ (c, 0̇) ∧ (a, b′) ≈ (c′, d′) ∧ (d′, b′) ≈ (d, d′) ∧ d′ < d

The attentive reader might again notice <, which we explain shortly. Apart from
this, this axiom allows us to deconstruct (a, b) ≈ (c, d) into four new pair relations,

2remember (a, 0) ∼(b, 0) denotes b = a+ 1
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mirroring the previous axiomwhich allowed us to show (a, b) ≈ (c, d) by first showing
these four pair relations. Again, we had to introduce the guard condition b 6≡ 0̇.
This, however, made our axiom sublty weaker than the original one we tried to
invert. Previously, when constructing an arbitrary relation (a, b) ≈ (c, d), we used
the relations constructed by the first axiom (of shape (a, 0̇) ≈ (a′, 0̇)). Using our
new axiom, we want to destruct any arbitrary relation until we eventually reach
this shape. However, just using the axiom shown above, we would only be able to
eventually derive relations of shape (a, 0̇) ≈ (a′, d), where d ≡ 0̇ is not necessarily
true. The solution is adding characterizing equation three (“tieback”, Lemma 4.5),
which is encoded as the new axiom AFSAT

3 :
∀aa′d.(a, 0̇) ≈ (a′, d)→ d ≡ 0̇

We have now successfully transformed all axioms necessary to describe ≈ . Yet,
we still require some more axioms: In the previous reduction, we used induction
on natural numbers to find their representative in the model. Now, we have to
do induction on elements of the model to find the natural number they represent.
While before, this was just plain natural induction, we now have to do induction on
elements of the model, since we do not yet know which number a given element
of the model represents. Since the model is arbitrary, we must find a well-founded
relation on the elements of the model to do this induction. This seems impossible at
first glance, because well-foundedness is not first-order expressible. However, using
a well-known fact about relations on finite types, already mechanized by e.g. Kirst
and Larchey-Wendling [18], we can induce a well-founded relation into our model:
Fact 8.7 (Well-founded relations for finite types)
Let D be a listable type and ≺ be a transitive, irreflexive relation on D. Then ≺ is well-
founded.

Since our induction mirrors complete (natural) induction, we have to find a rela-
tion < (mirroring <N) to be the transitive closure of the successor relation. Again,
we work around the fact that closure operations are not first-order expressible, by
instead defining < seperately, and relating it to the successor relation using an
additional axiom. We thus define the following syntactic sugar and axioms:

a ≤ b := N a ∧N b ∧ a ≈ b
a < b := a ≤ b ∧ a 6≡ b
AFSAT

4 := ∀lr.(l, 0̇) ≈ (r, 0̇)→ l < r ∧ ∀k.k < l→ k ≤ r
AFSAT

5 := ∀abc.a < b→ b < c→ a < c

Wenote that this is sufficient to show< is transitive and irreflexive. Axiom 4makes<
a closure of the successor relation, while also requiring that successive numbers are
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“close” – for any a, there is no number between a and its successor. This axiom also
strengthens the successor relation in subtle ways, which we discuss in Section 8.5.1
These five axioms are sufficient to close the reduction. This allows us to now write
down the actual reduction function F :

F FSAT, code : L (V2 × V2)→ FOL

F FSAT h := ∃0̇m.AFSAT
1 ∧AFSAT

2 ∧AFSAT
3 ∧AFSAT

4 ∧AFSAT
5 ∧ ∃

v∈V(h)

code h

code [] := >
code (((a, b), (c, d)) :: hs) := (a, b) ≈ (c, d) ∧ code hs ∧ a, b, c, d ≤ m

This function is computable, since we have implemented it in Coq. It is defined
analogous to our previous reduction function, by posing 0̇ as a constant and requir-
ing that the axioms are satisfied. We need an additional constant,m, bounding the
variables representing the ones from the constraint problem from above. Notice
that in the prefix, we turned ∀ into ∃ and→ into ∧, which is necessary since we are
reducing to (finite) satisfiability, not validity.
We proceed to now show that this function defines a reduction by first showing that
UDPCh → FSAT (F FSAT(h)) in Section 8.3, then that FSAT (F FSAT(h)) → UDPCh
in Section 8.4.
8.3 Reduction Preservation
For this step, we are given a solution ρ to the constraint problem h, i.e. an assignment
V → N assigning each variable in h a value such that all the constraints encoded
by h hold. From this, we need to show that F (h) is finitely satisfiable, which we do
by constructing a finite model. The actual finite model is a prefix of the standard
model we constructed previously, except for one change in the interpretation of ≈ .
Given the solution ρ, letm := 1 + max

v∈V(h)
ρ(v). We denote by N≤m the type of natural

numbers up to (and including)m. We set our domain D := N≤m + N2
≤m, so that

each element of the domain is either a natural number not larger thanm, or the pair
of two such numbers. The interpretation of l ≈ r, which is then allows us to define
our complete modelM = (D, I), is given as follows:

l
r y ∈ N≤m (c, d) ∈ N2

≤m

x ∈ N≤m x ≤ y x = c

(a, b) ∈ N2
≤m y = b (a, b) ∼(c, d)

Recall the definition of N m := m ≈m. While before, we had the interpretation of ≈

for two numbers be x = y, so the change to x ≤ y does not impact the definition of
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N m, because both are reflexive. The change is nontheless significant, since in the
previous formula, the only occurance of a ≈ b with a, b numbers, was in N , where
a = b. However, since we now encode ≤ using ≈ , there are actually cases where
e.g. 0 ≈ 1 can occur. Before, this was impossible by construction of F⊥, and gave us
additional encoding space for the Friedman translation, where we chose 0 ≈ 1 as the
translation for ⊥, as we were able to give it special treatment in our model. This
encoding method is now no longer possible.
We now need to show that this model actually is a finite model. It is finite, since
|D| = (m + 1) + (m + 1)2. Furthermore, l ≈ r is decidable for fixed l, r since N is
a discrete type (allowing us to also decide ∼), and since l ≤N r is also trivially
decidable.
It now remains to show that our finite model satisfies F FSAT(h). To show that the
axioms hold is mostly straightforward, once one has shown that a ≡ b ⇔ a = b

in our model. The latter fact seems straightforward, but the proof is rather subtle,
especially if either side of the ≈ is a pair and the other is a number.
Showing that the ∃-construction is satisfied also is straightforward, because we
choose ρ(v) for each v. Each ρ(v) is inN≤m, since it is smaller thanm by construction.
Thus we have shown that F FSAT(h) is finitely satisfied, concluding the simpler half
of the reduction:

Lemma 8.8 (Preservation) UDPCh→ FSAT (F FSAT(h)).

Proof As outlined above. �

8.4 Reduction Reflection
In this part, we have to show that the constraints encoded by h have a solution. We
are given an arbitrary, finite modelM = (D, I) satisfying F (h). By unfolding F (h),
we know that this model satisfies the axioms. Now, we want to extract a solution
to h from this model. Before we can do this, we first have to prove a handful of
utility lemmas. Afterwards, we introduce the concept of a chain and use it to extract
a solution to the constraint set.
To start, we first need to show some auxiliary lemmas. In particular, we are able to
show that a < b ≤ c⇒ a < c, as well as a ≤ b < c⇒ a < c, by case analysis on b ≡ a
(or c respectively). By Fact 8.7, y is well-founded. Using well-founded induction
along<, we can show ∀k.¬(k < 0̇) and ∀k.k ≥ 0̇, which seem equivalent, but are not
necessarily, since we have not been able to actually derive totality for ≤. Totality for
≤ is not necessary to formalize this reduction, and we discuss the model-theoretic
implications of this in Section 8.5.1. We are able to show ≤ antisymmetric, though.
Additionally, by the definition of N k, we have N k ⇒ k ≤ k.
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8.4.1 Chains
In order to extract a solution to our constraint set h, we first need to extract the
number corresponding to a certain element of our model. To do this, we build a
data structure called chain, a mirror version of the identically-named construction
we defined in the previous reduction (compare Definition 7.9 or Definition 5.7), by
iteratively applying the predecessor axiom AFSAT

1 until we reach 0. The chain has
all properties necessary to extract numbers representing elements of D.
Definition 8.9 (Chain)
A function f : D → O(N) is called a chain up tom : D representing n : N iff

1. ∀d : D.d ≤ m⇔ f m 6= ∅

2. ∀k : N. (∃d : D.d ≤ m ∧ f d = dne)⇒ k ≤ n

3. f m = [n]

4. f
(
0̇
)

= d0e

5. ∀(dl dr : D)(kl kr : N).f dl = dkle∧f dr = dkre ⇒
(
S kl = kr ⇔ (dl, 0̇) ≈ (dr, 0̇)

)
6. ∀dd′ f.d 6= ∅ ⇒ (f d = f d′ ⇔ d ≡ d′)

We call m and n the upper bound of f , and say that some m′ represents some n′ iff
f m′ = [n′].

The chain encodes a number for some elementsm : D. Since not all elements are the
representation of some number, f can also yield ∅. The properties can be understood
as follows:

1. This property requires a chain up tom to actually yield a number for every
m′ ≤ m. Additionally, it poses that the chain only yields numbers for such
inputs.

2. The chain only yields numbers less than its upper bound.
3. This property just encodes thatm actually represents n.
4. This property can be thought of as the starting condition for building the chain.

Initially, we want 0̇ to be represented by 0 : N.
5. This property is crucial since it encodes that the numbers represented by

the chain “are canonical”. In particular, the elements of D representing two
numbers are successors if and only if the represented numbers themselves are.
Remember that S kl = kr just means kl + 1 = kr.

6. The ⇐-direction just poses that f is injective (where not ∅), so that every
number has a unique representative (up to ≡).

https://www.ps.uni-saarland.de/~hostert/bachelor/coq/Undecidability.FOL.Reductions.H10UPC_to_FSAT.html#chain
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The⇒-direction is necessary since we want to avoid constructing an explicit
quotient modulo ≡, and poses that f does not distinguish first-order indistin-
guishable inputs.

Before we can work with such a chain, we need to construct one:

Lemma 8.10 (Chain construction)
Givenm : D such thatN m, there exists n, f such that f is a chain up tom representing n.

Proof by well-founded induction using < onm. We have two cases:
• m ≡ 0̇. In this case, we pose f as follows. The chain properties are easily

shown in this case.

fk =

{
d0e k ≡ 0̇

∅ otherwise

• m 6≡ 0̇. We knowm has a predecessorm′ by AFSAT
1 . Applying the induction

hypothesis tom′ yields f ′, a chain representingm′ up to n′. Our new chain f ,
given as follows, is up tom representing n′ + 1.

fk =

{
dn′ + 1e k ≡ m
f ′ k otherwise

Proving that f satisfies properties 1-6 is mostly straightforward, although it
involves a lot of case distinctions. Doing so makes crucial use the fact that f ′
is a chain, as well as the auxiliary lemmas mentioned before. �

Note that we could easily construct a chain having just properties 1,2,3, or 4, as
these are proven independently. Showing property 6 needs property 1 and 2, while
showing property 5 needs 1, 2, 3 and 6. Properties 1, 4, 5 and 6 are also needed later
on.
8.4.2 Using Chains
Oncewe are able to construct a chain, we are able to use this chain to extract solutions
to the constraints encoded in h.

Lemma 8.11 (Constraint recovery)
If f is a chain up to m representing n, and if (a, b) ≈ (c, d) where a, b, c, d are all ≤ m,
then we find ar, br, cr, dr such that f a = dare, f b = dbre, f c = dcre, f d = ddre and
(ar, br) ∼(cr, dr). In other words, ≈ on D transports to ∼ on N for the represented numbers.
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Proof by well-foundedness of < on b, with a, c, d quantified.
We note that f a, . . . f d 6= ∅ by chain property 1. We again consider two cases:

• b ≡ 0. In this case, by AFSAT
3 , we find d ≡ 0. So we are given (a, 0) ≈ (c, 0),

which fits chain property 5 of f . Since (x, 0) ∼(x+ 1, 0), we can conclude using
properties 4 and 6.

• b 6≡ 0. We can apply AFSAT
2 . We further apply the induction hypothesis to

(d′, b′) ≈ (d, d′) and (a, b′) ≈ (c′, d′), which is possible especially since d < d′,
which we needed to explicitly add to AFSAT

2 . The remainder is straightforward
by the defining properties of ∼ and chain property 5, similar to case 1. �

This concludes most of the heavy lifting required for this reduction, and we can
now conclude.

Lemma 8.12 (Reflection) FSAT(F FSAT(h))→ UDPCh

Proof We need to first build a chain f up to m using Lemma 8.10, where m is
existentially quantified in F . After this, we are able to extract the numbers making
up the solution to h by looking at the elements encoded in the big ∃-quantifier, and
looking up the represented numbers in f . Afterwards, it remains to show that these
numbers actually are solutions to h, which can easily be done using Lemma 8.11.�

8.5 Finalizing the Reduction
Our reduction is now complete:

Lemma 8.13 UDPC is many-one reducible to FSAT, even when restricted to formulas with
a single binary predicate.

Proof By Lemma 8.8, Lemma 8.12. �

Lemma 8.14 FSAT is undecidable, even when restricted to formulas with a single binary
predicate.

The problem FVAL, or finite validity, is the finite variant of VAL, requiring finite
models similarly to how FSAT does.
In classical logic, wewould nowbe able to conclude that finite validity is undecidable,
because, assuming LEM, we can show that a formulaϕ is finitely valid iff¬ϕ is finitely
satisfiable. In our meta-theory, we have to introduce double negations, so we can
only show that FVAL (¬̇ϕ)⇔ ¬FSATϕ. Yet, we can still reduce from UDPC in this
particular case. Since our definition of undecidability is by the co-semi-decidability
of the halting problem, we can still conclude that FVAL is undecidable.
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Lemma 8.15 UDPC is many-one reducible to FVAL, even when restricted to formulas with
a single binary predicate.

Lemma 8.16 FVAL is undecidable, even when restricted to formulas with a single binary
predicate.

Proof We assume a decider for FVAL. We can thus semi-decide FVAL and also
UDPC (Lemma 8.15) and thus UPC (Lemma 4.17), arriving at an semi-decider for
UDC. Therefore, UDC is co-semi-decidable. Contradiction with Theorem 4.14. �

As a corollary, FVAL is not effectively axiomatizable, since one usually requires an
effective deduction system to be sound, complete and enumerable/semi-decidable.
However, this would imply the semi-decidability of FVAL, which would imply a
co-semi-decider for the halting problem.
8.5.1 Remarks on the Finite Models of FFSAT(h)

While we aimed to characterize the finite models induced by the axioms to closely
match our standard model, we did not chose to make the axioms strong enough
to show canonicity, i.e. that all models are isomorphic to the standard model. In
particular, in an arbitrary model, numbers (that is, elements d for whichN d is true)
might not be arranged in a line. While a chain construction can be used to show that
there is a linear “chain” from any d to 0, it is not necessarily the case that there is only
one element d representing a given number, and the multiple numbers need not be
related by <. Any number, while only having one predecessor, might have multiple
successors which are neither first-order indistinguishable nor related by ≤. Thus, ≤
may not necessarily be total, and trichotomy may not hold. This explains the need
for m, which bounds all elements representing numbers making up the solution
to h from above, since this fixes them onto the unique chain descending from m

to 0, and thus fixes a particular walk down the “successor tree” along which the
elements of D behave more like natural numbers, allowing us to show Lemma 8.11.
While we have not actually constructed a model where successors are not unique,
we suspect it to exist.
Showing that the predecessors of a given number are unique is fairly straightforward
using AFSAT

4 and antisymmetry of ≤: Given two predecessors of a number, the only
way for both to fulfill the closeness property is if both are equal.
8.6 Remarks on the Coq Mechanization
In the Coq mechanization of the standard model, we construct an explicit list to
show D finite. We need to be careful in our modeling of N≤m – we choose an index-
inductive datatype with a single constructor by defining N≤m := fN : ∀n.n ≤N m→
N≤m, and use the fact that ≤N has derivation uniqueness, that is, for fixed a, b, all
proofs of a ≤ b are equal.
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For the reflection step (Section 8.4), we have to do a lot of groundwork before we can
get started proving the lemmas iterated here. Importantly, we have to derive deciders
for≡, just given a decider for ≈ . We also have to show that≡ is a congruence relation
for all of our syntactic sugar. Again, actually closing the reduction requires more
work since we have to carefully extract the ∃-quantified elements representing the
numbers making up the solution to h, since in Coq this embedding is implemented
by re-using the de Brujin indices used to define h. Keeping this consistent during
the actual implementation of F , as well as the ∃-elimination later on requires careful
housekeeping.
Mechanizing this reduction takes∼ 750 lines of Coq code. This count excludes utility
code shared with other reductions from previous chapters, as well as the proof of
Fact 8.7, which is taken from the mechanization by Kirst and Larchey-Wendling [18].



Chapter 9

Minimizing Logical Connectives for FSAT

As before, we do not only want to show FSAT undecidable for the minimal signature,
but also want to minimize the number of logical connectives. For this, we reconsider
the approaches already discussed in Chapter 6.
9.1 Double Negation Translation
Previously, we defined a double negation translation in Definition 6.4. Then, we
were not able to directly use this translation, since it was only valid under LEM,
because we work in an intuitionistic meta-theory. For FSAT, we required all models
to be finite and have decidable predicates. Since finite quantification is decidable,
we can construct a decider for finite satisfaction in a fixed model:
Lemma 9.1 (Decidability of finite satisfaction) Given a finite modelM, an environ-
ment ρ : V →M and a formula ϕ,M �ρ ϕ is decidable.

Proof All atomic predicates ofM are decidable. Quantified formulas are decidable
since finite quantification is decidable andM is finite. �

Thus, we are able to verify that the translation (·)N of Definition 6.4 preserves
satisfaction by finite models.
Lemma 9.2 Given a finite modelM, an environment ρ : V → M and a formula ϕ,
(M �ρ ϕ)⇔ (M �ρ (ϕ)N ).

Proof By induction on ϕ, using Lemma 9.1 for ∨, ∃. �

Using this translation, we are able to reduce any FOL formula into one that is
equivalent under FSAT and within the ∀ → ⊥-fragment. We are able to prove the
following reduction.
Lemma 9.3 FSAT is many-one reducible to FSAT over the ∀,→,⊥-fragment.

Proof The function (·)N fulfills the reduction properties by Lemma 9.2. �
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Theorem 9.4 FSAT is undecidable, even when restricted to formulas with a single binary
predicate over the ∀,→,⊥-fragment.
Proof By Lemma 9.3 and Lemma 8.14 �

9.2 ⊥ Elimination, Revisited
In Chapter 6, we already showed that SAT is decidable for formulas in a fragment
without negation. The precise model used for this proof was the “trivial” model,
which only has one element. Thus, it is a finite model, since additionally all relations
are interpreted as true, which is trivially decidable.
Definition 9.5 (Trivial model) For any signature, the trivial modelM := 1 has
exactly one inhabitant, ?. All functions are trivially interpreted to yield ?, while all predicates
are interpreted as >. Since > is decidable and 1 is finite, this model is an admissible finite
model.
Lemma 9.6 FSAT is decidable for formulas without ⊥.
Proof Every formula without ⊥ is satisfied by the trivial model. �

9.3 Finite Validity
For finite validity, we can do the same reduction:
Lemma 9.7 FVAL is many-one reducible to FVAL over the ∀,→,⊥-fragment.
Proof The function (·)N fulfills the reduction properties by Lemma 9.2. �

Theorem 9.8 FVAL is undecidable, even when restricted to formulas with a single binary
predicate over the ∀,→,⊥-fragment.
Proof By Lemma 9.7 and Lemma 8.16. Note that our reduction starts at UDPC. �

Unlike for FSAT, where satisfiability for fomulas in the ∀,→-fragment is decidable,
for FVAL we conjecture we are able to eliminate ⊥ using an approach similar to the
one from Chapter 6.
However, finding such a reduction is hard: FVAL actually is only co-semi-decidable.
UDPC, however, is only semi-decidable. So we can not reduce from UDPC to FVAL,
only from UDPC. Furthermore, a Friedman-style translation likely requires addi-
tional encoding space in the interpretation of ≈. Unlike before, we have filled all
available space, since n ≈m for n,m : N≤m is now interpreted as n ≤ m. This inter-
pretation is necessary for the standard model to satisfy our reduction formula, and
hence a significant change in the formula constructed by the reduction function,
as well as the standard model, is likely required. Hence this remains further work.
Formally, we conjecture:
Conjecture 9.9 FVAL is undecidable, even when restricted to formulas with a single binary
predicate over the ∀,→-fragment.
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Chapter 10

Conclusion

We have discussed the undecidability of the variants of the Entscheidungsproblem
present when investigating first-order logic in an intuitionistic framework. In short,
we found new proofs that validity (asking whether a formula is valid in all models),
satisfiability (whether a formula is valid in at least one model) and intuitionistic
provability (whether a formula is provable according to some deduction system) are
undecidable even when restricted to a single binary relation, while also investigating
which restrictions on the logical connectives are possible.
To be precise, we have shown that validity, intuitionistic provability and Kripke va-
lidity are undecidable even when further restricted to formulas of the ∀,→-fragment
(without negation), beyond just having a single binary relation. This was shown in
Theorem 6.12 for valdity and Theorem 7.14 for provability and Kripke validity. For
satisfiability, Kripke satisfiability as well as satisfiability and validity restricted to
finite models, we only showed that they are undecidable for formulas restricted to
the ∀,→,⊥-fragment and to having only a single binary relation. This was shown
in Lemma 6.14 for satisfiability, Theorem 7.19 for Kripke satisfiability, Lemma 8.14
for finite satisfiability, and Lemma 8.16 for finite validity. For finite validity, we
conjecture (see Conjecture 9.9) that this result could be sharpened to the fragment
without negation. For all variants of satisfiability, the ∀,→,⊥-fragment is already
minimal.
10.1 The Coq Mechanization
The complete Coq mechanization can be found at
https://www.ps.uni-saarland.de/~hostert/bachelor/coq/indexpage.html

To be precise, we host a fork of the Coq Library of Undecidability Proofs [6], which
includes our proofs. The electronic version of this thesis includes references to the
Coq mechanization for each specific lemma. The particular files of interest are:

• FOL.minFOL_undec – File summarizing the entire thesis

https://www.ps.uni-saarland.de/~hostert/bachelor/coq/indexpage.html
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• FOL.Reductions.H10UPC_to_FOL_minimal – Results of Chapter 6, Chapter 7
• FOL.Reductions.H10UPC_to_FSAT – Results of Chapter 8, Chapter 9
• FOL.Util.DoubleNegation – Mechanization of Lemma 9.2
• DiophantineConstraints.H10UPC – Definition of ∼. Originally due to Andrej

Dudenhefner and Dominik Kirst
• DiophantineConstraints.Util.H10UPC_facts – Some results of Chapter 4
• DiophantineConstraints.Reductions.H10UC_SAT_to_H10UPC_SAT
– Undecidability of UDPC

– DiophantineConstraints.H10UPC_undec actually states the undecidabil-
ity

Note that in Coq, the problem UDPC is know as H10UPC_SAT. The relation ∼ is called
h10upc_sem_direct.
The proof of Theorem 7.14 (undecidability of provability in the minimal fragment
and signature) takes about 900 lines of Coq code. From that proof, the undecidability
of validity, satisfiability, Kripke validity and Kripke satisfiability follow with only a
few lines of code each. This proof involves a lot of work in double-negated contexts,
which makes it somewhat hard to understand without knowing the “untranslated”
version of Chapter 5. However, it is still more direct than a proof based on ZF, which
first has to prove a lot of basic constructions regarding axiomatic set theory, before
attempting to reduce an undecidable problem into a set-theoretic formulation. Of
course, the proof requires the undecidability of Diophantine equations, which we
discuss shortly.
For finite satisfiability, our proof also takes about 1200 lines of Coq code when
including the double negation of Chapter 9. Here, we did not need to perform a
manual translation into the ∀,→,⊥-fragment, since this translation can be shown to
hold in general, as finite models behave classically.
A recurring theme in the Coq mechanization of FOL is the use of de Brujin indices,
which are used because they allow for an easier mechanization. Especially, the
meta-theory of FOL deduction systems is easier to mechanize. However, giving
concrete FOL terms is harder than on paper, since indices have to be computed
before entering the term. Verifying that a formula constructed using indices is
correct is easier, since we can circumvent the issues introduced by shadowing and
aliasing.
It should be noted that we do not present a mechanization of the “simple” version of
Chapter 5, since that chapter proves strictly weaker results than Chapter 7. During
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the development of the reduction ultimately outlined in Chapter 6, we did develop
a “simpler” version similar to that of Chapter 5, however, this version also uses a
different standardmodel and very ad-hoc construction of the reduction formula. We
still include Chapter 5 for didactical reasons, since the reduction of the later chapters
are best understood by comparing them to to the “simple” version performed in
that chapter. Similarly, the presented proof of Lemma 6.10 also is elided, since it can
easily be followed from Lemma 7.12.

The Coq proofs themselves, while not straightforward, are nontheless usually kept
simple, avoiding more advanced type theoretic notions like index-inductive elimina-
tion. There are a few exceptions: First, we rely on the uniqueness of proofs of < to
construct our finite model in Section 8.3. This result is often a textbook example for
working with indexed-inductive predicates, and thus already part of the Coq stan-
dard library. Furthermore, the chains defined in Definition 7.9 are defined similarly
to a vector, so that working with them requires a modest amount of index-inductive
elimination and inversion principles.
10.2 Comparsion to Existing Work
Compared to the paper by Kirst and Larchey-Wendling [18], our undecidability
proof is significantly shorter (ignoring the fact that we start at Diophantine equa-
tions). Their proof performs explicit quotient construction and signature compres-
sion, which requires several thousand lines of Coq code, whereas our reduction
not only immediately targets the minimal signature, but also inlines the quotient,
avoiding an explicit construction of this. However, while we just proved the un-
decidability of finite satisfiability for that minimal case, they proved that any FOL
formula over a discrete signature can be reduced to one in the minimal fragment
while preserving finite satisfiability, which is a much more general result.

The properties of the relation ∼ were critical in keeping this reduction short. Since ∼

has a very simple axiomatization, working with it in FOL was very feasible. Espe-
cially, one avoids having to first prove basic results about the underlying theory, as
was the case with ZF. Additionally, the axiomatization is already formulated using
just pairs and the relation itself, avoiding the need for a complex reduction into a
signature with just a single binary relation.

We expect that ∼ and UDPC can be used as a reduction source for other problems,
especially since it not only has an easily approachable definition (unlike Turing
machines, which involve dealing with an operational semantics), but also a short,
elegant, effective axiomatization, which makes it especially promising for proving
similar results for other logics.

However, while our particular reductions from UDPC (or UDC) to FOL problems
were simple, showing that our Diophantine constraints problem itself is undecidable
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is very hard. In particular, this result relies on the undecidability of Diophantine
equations. Diophantine equations were first shown undecidable in 1970 by Matiya-
sevitch [24] after a program spanning several decades.1 On the other hand, this
shows the utility of collecting undecidability proofs in a library like the Coq Library
of Undecidability Proofs [6]: Since the undecidability of Diophantine equations is
already mechanized, it can be used as a source problem for other reductions while
being certain that it actually is an undecidable problem. Further, collecting existing
undecidable problems allows for finding increasingly simpler reductions, or for
showing increasingly complex goals. Also, first-order logic was already mechanized
in the library, which freed us from mechanizing the syntax and deduction system
ourselves. Thus, the library greatly accelerated this project and made it possible to
be in the scope of a Bachelor’s thesis at all.

Furthermore, when comparing with the previous mechanization of the undecidabil-
ity result for validity by Kirst and Hermes [17], we note that our result also restricts
the logical fragment to the ∀,→-fragment, which theirs does not. We thus believe
this to be the firstmechanization of the undecidability of various first-order problems
not only for the minimal signature, but also for the minimal logical fragment.

We shall also compare our work to the original, non-mechanized undecidability
proofs we already mentioned. Notably, Turing [29] shows that validity for a system
similar to FOL is undecidable by constructing a formula provable if and only if a
given Turing machine ever outputs 0. Hence, he many-one reduces from a slight
variation of the halting problem. The formula he constructs uses conjunction, impli-
cation and a signature with more than one binary relation, hence it is not minimal.
Turing does not explicitly consider validity and satisfiability, however, since he
works in a classical meta-theory, the undecidability of these problems immediately
follows.

Kalmár’s work [16] is part of a broader program by Kalmár and others to find a
signature compression which, starting at an arbitrary FOL formula, yields a FOL
formula in the minimal signature, that is, with only a single binary relation. This
paper contributes a crucial part of this chain, reducing froma formulawith arbitrarily
many binary relations to a formula with just one such relation, resting on previous
work by Kalmár and others which already reduced the arbitrary case to that case.
Notably, Kalmár also reduces the formula to a simpler quantifier prefix, something
which we have not considered. Kalmár’s result is much stronger than our result,
since it allows one to signature-compress an arbitrary FOL formula, whereas we
have only shown that validity and related problems are undecidable for a small
signature. We also have not considered the quantifier prefix for this result, while

1Finding a process to determinewhether Diophantine equation solutions exist was posed byHilbert
in 1900, as problem 10 of his famous list of problems.
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Kalmár’s result also has as a corollary that our FOL problems are undecidable for
formulas with such a quantifier prefix.
Compared to Trakhtenbrot’s original proof of the undecidability of finite satisfia-
bility [28], we have a somewhat different approach. Trakhtenbrot reduces from
µ-recursive functions, an alternative Turing-complete model of computation. His
reduction builds a formula which is finitely satisfiable if and only if the given µ-
recursive function has a root, i.e. its image contains 0. His actual reduction function
is surprisingly elegant, since it proceeds by plain structural recursion on the AST of
the given µ-function.
Since Trakhtenbrot’s original proof, many alternative variations have been given,
like the one by Libkin [21], which directly reduces from Turing machines. Libkin
also claims that this reduction can be easily transformed into targeting the minimal
signature, but leaves this as an exercise to the reader.
10.3 Open Problems
As mentioned, showing that finite validity is undecidable for a fragment without
negation remains open. We conjecture (Conjecture 9.9) that a reduction from UDPC
(since finite validity is co-semi-decidable, whereUDPC is semi-decidable) is possible
using the axiomatization presented in this thesis.
Similarly, in Chapter 7, we only showed that provability defined over the intuitionis-
tic proof system is undecidable. Such a result immediately extends to provability for
the classical proof system as long as one assumes LEM. We suspect that one might
weaken the used axioms here, yet this too remains open. A technique based on a
translation from classical provability to intuitionstic provability defined by Forster
et al. [5] might be successful here.
To continue, one may want to show that FOL is undecidable even when restricted to
a certain quantifier prefix, like in the work by Kalmár [16]. A cursory analysis of
our formula for validity defined in Section 6.3 reveals that it seems to be Π0

6
2, which

certainly is not the minimal prefix. Reducing the quantifier prefix is likely to require
significant work, and thus also remains open.

2The notation Π0
6 means that the formula can be converted to one where all quantifiers are at the

front of the overall formula, where that prefix has shape ∀∃∀∃∀∃. The actual prefix might repeat
individual quantifiers, but they must appear in that order.
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