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Bad Example from Kirst and Hermes (2021)
Lemma prv_to_min_inductive A n :

minZFeq' <<= A -> A ` rm_const_fm (inductive $n) -> A ` is_inductive $n.
Proof.

cbn. intros HA HI. apply CI.
- apply CE1 in HI. use exists' HI x. clear HI.

apply (ExI x). cbn. assert1 H. apply CE in H as [H1 H2]. apply CI; trivial.
change (∃ $0 ≡' ↑ n ∧ x `[↑] ∈' $0) with (∃ $0 ≡' $n`[↑] ∧ x`[↑] ∈' $0) in H2.
now simpl ex in H2.

- apply CE2 in HI. prv_all' x. apply (AllE x) in HI. cbn in HI. simpl ex in HI.
change (∃ $0 ≡' ↑ n ∧ x`[↑] ∈' $0) with (∃ $0 ≡' $n`[↑] ∧ x`[↑] ∈' $0) in HI.
simpl ex in HI. rewrite imps in *. use exists' HI y. clear HI.
assert1 H. apply (ExI y). cbn. subsimpl. apply CI.
+ apply CE1 in H. use exists' H a. clear H. assert1 H. apply CE in H as [H1 H2].

simpl ex in H1. prv_all' b. apply (AllE b) in H2. cbn in H2. subsimpl in H2.
eapply iff_equiv; try apply H2; try tauto.
intros B HB. clear H2. eapply Weak in H1; try apply HB. split; intros H2.
* use exists' H1 z. clear H1. assert1 H. apply CE in H as [H H'].

apply prv_ex_eq in H; try rewrite <- HB; auto. cbn in H. subsimpl in H.
apply prv_ex_eq in H; try rewrite <- HB; auto. cbn in H. subsimpl in H.
eapply Weak in H2. apply (DE H2). 3: auto.
-- apply (ExI x). cbn. subsimpl. apply CI; auto. apply (AllE x) in H'. cbn in H'. subsimpl in H'.

apply CE2 in H'. eapply IE. apply (Weak H'); auto. apply DI1. apply minZF_refl. rewrite <- HB. auto 6.
-- apply (ExI z). cbn. subsimpl. apply CI.

++ apply (AllE z) in H'. cbn in H'. subsimpl in H'. apply CE2 in H'. eapply IE.
apply (Weak H'); auto. apply DI2. apply minZF_refl. rewrite <- HB. auto 6.

++ apply (AllE b) in H. cbn in H. subsimpl in H. apply CE2 in H. eapply IE.
apply (Weak H); auto. apply DI2. auto.

* use exists' H1 z. clear H1. assert1 H. apply CE in H as [H H'].
apply prv_ex_eq in H; try rewrite <- HB; auto. cbn in H. subsimpl in H.
apply prv_ex_eq in H; try rewrite <- HB; auto. cbn in H. subsimpl in H.
eapply Weak in H2. use exists' H2 c. 2: auto. clear H2. assert1 H1. apply CE in H1 as [H1 H2].
apply (AllE c) in H'. cbn in H'. subsimpl in H'. apply CE1 in H'. eapply Weak in H'.
apply (IE H') in H1. 2: auto. clear H'. apply (DE H1).
-- apply DI1. eapply minZF_elem. rewrite <- HB, HA. auto 8. 3: apply (Weak H2); auto.

2: auto. apply minZF_refl. rewrite <- HB, HA. auto 8.
-- apply DI2. apply (AllE b) in H. cbn in H. subsimpl in H. apply CE1 in H. eapply DE'.

eapply IE. apply (Weak H). auto. eapply minZF_elem. rewrite <- HB, HA. auto 8.
3: apply (Weak H2); auto. 2: auto. apply minZF_refl. rewrite <- HB, HA. auto 8.

+ apply CE2 in H. change (∃ $0 ≡' ↑ n ∧ y`[↑] ∈' $0) with (∃ $0 ≡' $n`[↑] ∧ y`[↑] ∈' $0) in H.
now simpl ex in H.

Qed.
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Towards a Coq Library of First-Order Logic

Merge of developments presented at ITP/CPP/IJCAR/LFCS, including:

Completeness:
Several deduction systems and semantics

Constructive analysis (relation to MP and WKL, exploding models)

Incompleteness:
(Fragments and extensions of) Peano arithmetic and ZF set theory

Computational approach, no Gödel/Rosser sentences

Undecidability:
Synthetic reductions from PCP and H10

Validity, satisfiability, provability, finite satisfiability, PA, ZF

Part of the Coq Library of Undecidability Proofs (Forster et al. (2020))
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Representing First-Order Logic in Coq

Meta-theoretic results require a deep embedding:

De Bruijn encoding of syntax, parallel substitution

Model-theoretic semantics by embedding into Coq’s logic

Inductive predicates to represent deduction systems

Nice meta-theory but challenging for more concrete results:

Writing down long first-order formulas ϕ in de Bruijn is unpleasant

Semantic derivations Γ � ϕ compute to statements in Coq but might
still expose syntax e.g. via axiom schemes present in Γ

Deductions Γ ` ϕ need to be done by hand, including substitution
treatment for quantifier rules

Partial solutions:

Come up with compromises (e.g. Laurent (2021))

Implement tools for each problem (our approach)
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DEMO
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DEMO Reification
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Reification

Reification:

Extraction of Coq formulas into FOL abstract syntax

Approach:

Recursively match Coq AST for known constructs

Construct environment beforehand

Use MetaCoq
I We already had experience with it
I Already required for other parts of the library
I Allows deep introspection of Coq AST

Reification with MetaCoq already seen in Forster and Kunze (2019)

Reification of FOL previously worked on by Rech (2020)

Main difficulties:

Transporting binders (∀,∃) into FOL

Building environments
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Analysis

Issues:

Finding proofs is slow
I Just looking for the term is way faster
I Can you profile MetaCoq?

Reification just looks at AST/syntax
I Can not reify terms hidden behind definitions
I Requires users to use proper notations and definitions

Reification only knows about basic embedding of function/relation
symbols

I Reifying extensional equality does not work
Framework does not know what eq is represented by in FOL
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Extension points

Potential solution for previous problems: Extension points

User-defined type class instance

Can be used to supply additional representations, like
I Extensional equality
I FOL terms for higher-order embeddings

Requires understanding of framework internals
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Deductive Proofs
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Deductive Proofs
Lemma prv_to_min_inductive A n :

minZFeq' <<= A -> A ` rm_const_fm (inductive $n) -> A ` is_inductive $n.
Proof.

cbn. intros HA HI. apply CI.
- apply CE1 in HI. use exists' HI x. clear HI.

apply (ExI x). cbn. assert1 H. apply CE in H as [H1 H2]. apply CI; trivial.
change (∃ $0 ≡' ↑ n ∧ x `[↑] ∈' $0) with (∃ $0 ≡' $n`[↑] ∧ x`[↑] ∈' $0) in H2.
now simpl ex in H2.

- apply CE2 in HI. prv_all' x. apply (AllE x) in HI. cbn in HI. simpl ex in HI.
change (∃ $0 ≡' ↑ n ∧ x`[↑] ∈' $0) with (∃ $0 ≡' $n`[↑] ∧ x`[↑] ∈' $0) in HI.
simpl ex in HI. rewrite imps in *. use exists' HI y. clear HI.
assert1 H. apply (ExI y). cbn. subsimpl. apply CI.
+ apply CE1 in H. use exists' H a. clear H. assert1 H. apply CE in H as [H1 H2].

simpl ex in H1. prv_all' b. apply (AllE b) in H2. cbn in H2. subsimpl in H2.
eapply iff_equiv; try apply H2; try tauto.
intros B HB. clear H2. eapply Weak in H1; try apply HB. split; intros H2.
* use exists' H1 z. clear H1. assert1 H. apply CE in H as [H H'].

apply prv_ex_eq in H; try rewrite <- HB; auto. cbn in H. subsimpl in H.
apply prv_ex_eq in H; try rewrite <- HB; auto. cbn in H. subsimpl in H.
eapply Weak in H2. apply (DE H2). 3: auto.
-- apply (ExI x). cbn. subsimpl. apply CI; auto. apply (AllE x) in H'. cbn in H'. subsimpl in H'.

apply CE2 in H'. eapply IE. apply (Weak H'); auto. apply DI1. apply minZF_refl. rewrite <- HB. auto 6.
-- apply (ExI z). cbn. subsimpl. apply CI.

++ apply (AllE z) in H'. cbn in H'. subsimpl in H'. apply CE2 in H'. eapply IE.
apply (Weak H'); auto. apply DI2. apply minZF_refl. rewrite <- HB. auto 6.

++ apply (AllE b) in H. cbn in H. subsimpl in H. apply CE2 in H. eapply IE.
apply (Weak H); auto. apply DI2. auto.

* use exists' H1 z. clear H1. assert1 H. apply CE in H as [H H'].
apply prv_ex_eq in H; try rewrite <- HB; auto. cbn in H. subsimpl in H.
apply prv_ex_eq in H; try rewrite <- HB; auto. cbn in H. subsimpl in H.
eapply Weak in H2. use exists' H2 c. 2: auto. clear H2. assert1 H1. apply CE in H1 as [H1 H2].
apply (AllE c) in H'. cbn in H'. subsimpl in H'. apply CE1 in H'. eapply Weak in H'.
apply (IE H') in H1. 2: auto. clear H'. apply (DE H1).
-- apply DI1. eapply minZF_elem. rewrite <- HB, HA. auto 8. 3: apply (Weak H2); auto.

2: auto. apply minZF_refl. rewrite <- HB, HA. auto 8.
-- apply DI2. apply (AllE b) in H. cbn in H. subsimpl in H. apply CE1 in H. eapply DE'.

eapply IE. apply (Weak H). auto. eapply minZF_elem. rewrite <- HB, HA. auto 8.
3: apply (Weak H2); auto. 2: auto. apply minZF_refl. rewrite <- HB, HA. auto 8.

+ apply CE2 in H. change (∃ $0 ≡' ↑ n ∧ y`[↑] ∈' $0) with (∃ $0 ≡' $n`[↑] ∧ y`[↑] ∈' $0) in H.
now simpl ex in H.

Qed.
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eapply Weak in H2. use exists' H2 c. 2: auto. clear H2. assert1 H1. apply CE in H1 as [H1 H2].
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+ apply CE2 in H. change (∃ $0 ≡' ↑ n ∧ y`[↑] ∈' $0) with (∃ $0 ≡' $n`[↑] ∧ y`[↑] ∈' $0) in H.
now simpl ex in H.

Qed.
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Deductive Proofs
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Deductive Proofs

Assumption management
rather tedious:

Our tool is inspired by the Iris Proof
Mode (Krebbers et al. (2017)):
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Deductive Proofs

Assumption management Same proof done using Proof Mode:
very tedious:

Lemma prv_to_min_inductive n :
minZFeq' ` rm_const_fm (inductive $n) → is_inductive $n.

Proof.
cbn. fstart. fintros "[[e [H [s [H0 H1]]]] H2]". fsplit.
- fexists e. fsplit. fintros x; fapply "H". frewrite <- "H0"; ctx.
- fintros. fdestruct ("H2" x) as "...".

{ fexists x. fsplit. fapply ax_refl'. fexists $n. fsplit.
fapply ax_refl'. ctx. }

fexists x0. fsplit.
+ fintros y. fsplit.

* fintros "H11". fapply "H8" in "H11" as "[? [? ?]]".
fapply "H7" in "H11" as "[|]".
-- fleft. frewrite <- "H2". frewrite <- "H11". ctx.
-- fright. fdestruct ("H6" y). fdestruct "H6".

frewrite <- "H11". ctx. all: frewrite "H6"; ctx.
* fintros "[|]".

-- fapply "H8". fexists x2. fsplit. fapply "H7". fleft.
fapply ax_refl'. frewrite "H2". ctx.

-- frewrite "H11". fapply "H8". fexists x3. fsplit. fapply "H7".
fright. fapply ax_refl'. fapply "H6". fleft. fapply ax_sym'. ctx.

+ frewrite <- "H9". ctx.
Qed.
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Implementation Details

(Almost) completely implemented using Ltac
Except for MetaCoq plugin to turn strings into Coq identifiers

Aliases to control notations. They also carry the hypothesis and
variable names, e.g.

econs : string -> form -> list form

econs s phi E := phi :: E

Rewriting:
I Equality not built into our FOL. Instead user can provide custom

equality symbol and congruence lemmas using type class.

I We then rewrite by applying the following substitution rule:

T ` x = y → ∀ϕ. T ` ϕ[x ] = ϕ[y ]
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Remarks

Across whole development overall reduction from 167 to 89 proof lines

Limitations:
I Performance: For larger proofs noticeable delays (up to a few seconds

for complex tactics).

I Deduction on theories not fully supported yet
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Conclusion

3 Tools: HOAS input language, reification tactic, proof mode

Ideas all on the market, adapted to FOL library

Prototypes with limitations regarding performance and scale

You can use our FOL library without caring about the implementation

Tools in principle adjustable to similar object logics

Demos and manuals: reification tactic, proof mode

Thank you!
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