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Rust: References + Lifetimes = Memory + Thread Safety

Unlike C, Rust has several kinds of references (pointers):

& 'a mut T & 'a T

* mut T
Mutable
Aliased
unsafe

let mut v = vec![10, 11];
let vptr = &'a mut v[1];
Vec::push(&'b mut v, 12);
println!("v[1] = {}", *vptr); E
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Consider an optimizing compiler:

fn foo(a: &mut i32) {
let x = *a;
*a = 42;
bar();
*a = x;

}

Correctness: bar() can not access a,
since mutable references have no aliases... or do they?
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How To Recover This Optimization?

Idea: Declare that our unsafe code is wrong!

Type system

Operational Semantics
Borrow Checker Aliasing Model
unsafe code opts out No opt-out from UB
⇒ Not useful for optimizations ⇒ Useful for optimizations

Aliasing model tracks aliasing, declares our unsafe code is UB.

Aliasing model is purely ghost, not present in compiled binary.
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Each Node is a State Machine

States represent permissions to read or write.

Every access causes transitions at every node, based on

Local (↑) vs. Foreign (↓) access
Read (R) vs. Write (W) access

Reserved Unique Frozen

Disabled
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↓W

↑W ↓R

↓R,↑R ↑R,↑W ↓R,↑R

↓R,↓W

↑W

↑R,↑W
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Tree Borrows: What Else is There?

1. Protectors: More UB, more optimizations
2. Concurrency: Supported
3. Lazy initialization: Use &mut v[0] at offset 1
4. Two-phased Borrows: Supported
5. Interior Mutability: Supported
6. Dirty Hacks: Not Required

Our predecessor, Stacked Borrows, lacks support for (3)-(6).
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The End

Thanks for your attention!

8

Putting The Borrows Into Trees

Aliasing model tracks references in a tree data structure:

x

Nodes precisely represent references.

Each node x splits tree in two:

Local: references x “knows about”
Foreign: reference x does not know about

Access to foreign
local

reference: foreign
local

access

13

Tree Borrows: A Collaboration

DerekJohannesRalfNeven

Miri Simuliris Program Logic
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