
Leveraging Rust’s Lifetimes
for

Improved Performance and Correctness

Talk for the Aptitude Colloquium of

Johannes Hostert

17 September 2024

2

Rust: A Safe Systems Programming Language

2

Rust: A Safe Systems Programming Language

2

Rust: A Safe Systems Programming Language

2

Rust: A Safe Systems Programming Language

2

Rust: A Safe Systems Programming Language

3

Rust: References + Lifetimes = Memory + Thread Safety

Unlike C, Rust has several kinds of references (pointers):

& 'a mut T & 'a T

* mut T
Mutable
Aliased
unsafe

let mut v = vec![10, 11];
let vptr = &'a mut v[1];
Vec::push(&'b mut v, 12);
println!("v[1] = {}", *vptr); E

Lifetime 'b
Lifetime 'a

3

Rust: References + Lifetimes = Memory + Thread Safety

Unlike C, Rust has several kinds of references (pointers):

& 'a mut T & 'a T

* mut T
Mutable
Aliased
unsafe

let mut v = vec![10, 11];
let vptr = &'a mut v[1];
Vec::push(&'b mut v, 12);
println!("v[1] = {}", *vptr); E

Lifetime 'b
Lifetime 'a

3

Rust: References + Lifetimes = Memory + Thread Safety

Unlike C, Rust has several kinds of references (pointers):

& 'a mut T
Mutable

& 'a T
Immutable

* mut T
Mutable
Aliased
unsafe

let mut v = vec![10, 11];
let vptr = &'a mut v[1];
Vec::push(&'b mut v, 12);
println!("v[1] = {}", *vptr); E

Lifetime 'b
Lifetime 'a

3

Rust: References + Lifetimes = Memory + Thread Safety

Unlike C, Rust has several kinds of references (pointers):

& 'a mut T
Mutable
Exclusive

& 'a T
Immutable

Aliased/Shared

* mut T
Mutable
Aliased
unsafe

let mut v = vec![10, 11];
let vptr = &'a mut v[1];
Vec::push(&'b mut v, 12);
println!("v[1] = {}", *vptr); E

Lifetime 'b
Lifetime 'a

3

Rust: References + Lifetimes = Memory + Thread Safety

Unlike C, Rust has several kinds of references (pointers):

& 'a mut T
Mutable
Exclusive

& 'a T
Immutable

Aliased/Shared

* mut T
Mutable
Aliased
unsafe

let mut v = vec![10, 11];
let vptr = &'a mut v[1];
Vec::push(&'b mut v, 12);
println!("v[1] = {}", *vptr);

E
Lifetime 'b

Lifetime 'a

3

Rust: References + Lifetimes = Memory + Thread Safety

Unlike C, Rust has several kinds of references (pointers):

& 'a mut T
Mutable
Exclusive

& 'a T
Immutable

Aliased/Shared

* mut T
Mutable
Aliased
unsafe

v 10 11
let mut v = vec![10, 11];
let vptr = &'a mut v[1];
Vec::push(&'b mut v, 12);
println!("v[1] = {}", *vptr);

E
Lifetime 'b

Lifetime 'a

3

Rust: References + Lifetimes = Memory + Thread Safety

Unlike C, Rust has several kinds of references (pointers):

& 'a mut T
Mutable
Exclusive

& 'a T
Immutable

Aliased/Shared

* mut T
Mutable
Aliased
unsafe

v 10 11

vptr

let mut v = vec![10, 11];
let vptr = &'a mut v[1];
Vec::push(&'b mut v, 12);
println!("v[1] = {}", *vptr);

E
Lifetime 'b

Lifetime 'a

3

Rust: References + Lifetimes = Memory + Thread Safety

Unlike C, Rust has several kinds of references (pointers):

& 'a mut T
Mutable
Exclusive

& 'a T
Immutable

Aliased/Shared

* mut T
Mutable
Aliased
unsafe

v

10 11 12

vptr

let mut v = vec![10, 11];
let vptr = &'a mut v[1];
Vec::push(&'b mut v, 12);
println!("v[1] = {}", *vptr);

E
Lifetime 'b

Lifetime 'a

3

Rust: References + Lifetimes = Memory + Thread Safety

Unlike C, Rust has several kinds of references (pointers):

& 'a mut T
Mutable
Exclusive

& 'a T
Immutable

Aliased/Shared

* mut T
Mutable
Aliased
unsafe

v

10 11 12

vptr

let mut v = vec![10, 11];
let vptr = &'a mut v[1];
Vec::push(&'b mut v, 12);
println!("v[1] = {}", *vptr); E

Lifetime 'b
Lifetime 'a

3

Rust: References + Lifetimes = Memory + Thread Safety

Unlike C, Rust has several kinds of references (pointers):

& 'a mut T
Mutable
Exclusive

& 'a T
Immutable

Aliased/Shared

* mut T
Mutable
Aliased
unsafe

let mut v = vec![10, 11];
let vptr = &'a mut v[1];
Vec::push(&'b mut v, 12);
println!("v[1] = {}", *vptr); E

Lifetime 'b
Lifetime 'a

3

Rust: References + Lifetimes = Memory + Thread Safety

Unlike C, Rust has several kinds of references (pointers):

& 'a mut T
Mutable
Exclusive

& 'a T
Immutable

Aliased/Shared

* mut T
Mutable
Aliased
unsafe

let mut v = vec![10, 11];
let vptr = &'a mut v[1];
Vec::push(&'b mut v, 12);
println!("v[1] = {}", *vptr); E

Lifetime 'b
Lifetime 'a

3

Rust: References + Lifetimes = Memory + Thread Safety

Unlike C, Rust has several kinds of references (pointers):

& 'a mut T
Mutable
Exclusive

& 'a T
Immutable

Aliased/Shared

* mut T
Mutable
Aliased
unsafe

let mut v = vec![10, 11];
let vptr = &'a mut v[1];
Vec::push(&'b mut v, 12);
println!("v[1] = {}", *vptr); E

Lifetime 'b
Lifetime 'a

Leveraging Rust’s Lifetimes

for

and

Leveraging Rust’s Lifetimes
for

and

Leveraging Rust’s Lifetimes
for

and

Tree Borrows Spec Testing

Leveraging Rust’s Lifetimes
for

and

Tree Borrows Spec Testing

5

References Forbid Aliasing

Consider an optimizing compiler:

fn foo(a: &mut i32) {
let x = *a;
*a = 42;
bar();
*a = x;

}

Correctness: bar() can not access a,
since mutable references have no aliases... or do they?

5

References Forbid Aliasing

Consider an optimizing compiler:

fn foo(a: &mut i32) {
let x = *a;
*a = 42;
bar();
*a = x;

}

⇒
fn foo(a: &mut i32) {

let x = *a;
*a = 42;
bar();
*a = x;

}

Correctness: bar() can not access a,
since mutable references have no aliases... or do they?

5

References Forbid Aliasing

Consider an optimizing compiler:

fn foo(a: &mut i32) {
let x = *a;
*a = 42;
bar();
*a = x;

}

⇒
fn foo(a: &mut i32) {

let x = *a;
// *a = 42;
bar();
*a = x;

}

Correctness: bar() can not access a,
since mutable references have no aliases... or do they?

5

References Forbid Aliasing

Consider an optimizing compiler:

fn foo(a: &mut i32) {
let x = *a;
*a = 42;
bar();
*a = x;

}

⇒
fn foo(a: &mut i32) {

let x = *a;
// *a = 42;
bar();
// *a = x;

}

Correctness: bar() can not access a,
since mutable references have no aliases... or do they?

5

References Forbid Aliasing

Consider an optimizing compiler:

fn foo(a: &mut i32) {
let x = *a;
*a = 42;
bar();
*a = x;

}

⇒
fn foo(a: &mut i32) {

// let x = *a;
// *a = 42;
bar();
// *a = x;

}

Correctness: bar() can not access a,
since mutable references have no aliases... or do they?

5

References Forbid Aliasing

Consider an optimizing compiler:

fn foo(a: &mut i32) {
let x = *a;
*a = 42;
bar();
*a = x;

}

⇒
fn foo(a: &mut i32) {

// let x = *a;
// *a = 42;
bar();
// *a = x;

}

Correctness: bar() can not access a.

,
since mutable references have no aliases... or do they?

5

References Forbid Aliasing

Consider an optimizing compiler:

fn foo(a: &mut i32) {
let x = *a;
*a = 42;
bar();
*a = x;

}

⇒
fn foo(a: &mut i32) {

// let x = *a;
// *a = 42;
bar();
// *a = x;

}

Correctness: bar() can not access a,
since mutable references have no aliases.

.. or do they?

5

References Forbid Aliasing

Consider an optimizing compiler:

fn foo(a: &mut i32) {
let x = *a;
*a = 42;
bar();
*a = x;

}

⇒
fn foo(a: &mut i32) {

// let x = *a;
// *a = 42;
bar();
// *a = x;

}

Correctness: bar() can not access a,
since mutable references have no aliases... or do they?

6

Unsafe Code Can Create Aliasing References

fn foo(a: &mut i32) { .. }

static mut GLOBAL: i32 = 0;
fn bar() {

unsafe { println!("{}", &GLOBAL); }
}
fn main() {

let a = unsafe { &mut GLOBAL };
foo(a);

}

Without optimizations:
⇝ 42

With optimizations:
⇝ 0

6

Unsafe Code Can Create Aliasing References

fn foo(a: &mut i32) { .. }

static mut GLOBAL: i32 = 0;
fn bar() {

unsafe { println!("{}", &GLOBAL); }
}
fn main() {

let a = unsafe { &mut GLOBAL };
foo(a);

}

Without optimizations:
⇝ 42

With optimizations:
⇝ 0

6

Unsafe Code Can Create Aliasing References

fn foo(a: &mut i32) { .. }

static mut GLOBAL: i32 = 0;
fn bar() {

unsafe { println!("{}", &GLOBAL); }
}
fn main() {

let a = unsafe { &mut GLOBAL };
foo(a);

}

Without optimizations:
⇝ 42

With optimizations:
⇝ 0

7

How To Recover This Optimization?

Idea: Declare that our unsafe code is wrong!

Type system

Operational Semantics
Borrow Checker Aliasing Model
unsafe code opts out No opt-out from UB
⇒ Not useful for optimizations ⇒ Useful for optimizations

Aliasing model tracks aliasing, declares our unsafe code is UB.

Aliasing model is purely ghost, not present in compiled binary.

7

How To Recover This Optimization?

Idea: Declare that our unsafe code is wrong!

Type system

Operational Semantics
Borrow Checker Aliasing Model
unsafe code opts out No opt-out from UB
⇒ Not useful for optimizations ⇒ Useful for optimizations

Aliasing model tracks aliasing, declares our unsafe code is UB.

Aliasing model is purely ghost, not present in compiled binary.

7

How To Recover This Optimization?

Idea: Declare that our unsafe code is wrong!

Type system

Operational Semantics

Borrow Checker

Aliasing Model
unsafe code opts out No opt-out from UB
⇒ Not useful for optimizations ⇒ Useful for optimizations

Aliasing model tracks aliasing, declares our unsafe code is UB.

Aliasing model is purely ghost, not present in compiled binary.

7

How To Recover This Optimization?

Idea: Declare that our unsafe code is wrong!

Type system

Operational Semantics

Borrow Checker

Aliasing Model

unsafe code opts out

No opt-out from UB
⇒ Not useful for optimizations ⇒ Useful for optimizations

Aliasing model tracks aliasing, declares our unsafe code is UB.

Aliasing model is purely ghost, not present in compiled binary.

7

How To Recover This Optimization?

Idea: Declare that our unsafe code is wrong!

Type system

Operational Semantics

Borrow Checker

Aliasing Model

unsafe code opts out

No opt-out from UB

⇒ Not useful for optimizations

⇒ Useful for optimizations

Aliasing model tracks aliasing, declares our unsafe code is UB.

Aliasing model is purely ghost, not present in compiled binary.

7

How To Recover This Optimization?

Idea: Declare that our unsafe code is wrong!

Type system Operational Semantics
Borrow Checker

Aliasing Model

unsafe code opts out

No opt-out from UB

⇒ Not useful for optimizations

⇒ Useful for optimizations

Aliasing model tracks aliasing, declares our unsafe code is UB.

Aliasing model is purely ghost, not present in compiled binary.

7

How To Recover This Optimization?

Idea: Declare that our unsafe code is wrong!

Type system Operational Semantics
Borrow Checker

Aliasing Model

unsafe code opts out No opt-out from UB
⇒ Not useful for optimizations

⇒ Useful for optimizations

Aliasing model tracks aliasing, declares our unsafe code is UB.

Aliasing model is purely ghost, not present in compiled binary.

7

How To Recover This Optimization?

Idea: Declare that our unsafe code is wrong!

Type system Operational Semantics
Borrow Checker

Aliasing Model

unsafe code opts out No opt-out from UB
⇒ Not useful for optimizations ⇒ Useful for optimizations

Aliasing model tracks aliasing, declares our unsafe code is UB.

Aliasing model is purely ghost, not present in compiled binary.

7

How To Recover This Optimization?

Idea: Declare that our unsafe code is wrong!

Type system Operational Semantics
Borrow Checker Aliasing Model
unsafe code opts out No opt-out from UB
⇒ Not useful for optimizations ⇒ Useful for optimizations

Aliasing model tracks aliasing, declares our unsafe code is UB.

Aliasing model is purely ghost, not present in compiled binary.

7

How To Recover This Optimization?

Idea: Declare that our unsafe code is wrong!

Type system Operational Semantics
Borrow Checker Aliasing Model
unsafe code opts out No opt-out from UB
⇒ Not useful for optimizations ⇒ Useful for optimizations

Aliasing model tracks aliasing, declares our unsafe code is UB.

Aliasing model is purely ghost, not present in compiled binary.

7

How To Recover This Optimization?

Idea: Declare that our unsafe code is wrong!

Type system Operational Semantics
Borrow Checker Aliasing Model
unsafe code opts out No opt-out from UB
⇒ Not useful for optimizations ⇒ Useful for optimizations

Aliasing model tracks aliasing, declares our unsafe code is UB.

Aliasing model is purely ghost, not present in compiled binary.

8

Putting The Borrows Into Trees

Aliasing model tracks references in a tree data structure:

Nodes precisely represent references.

Each node x splits tree in two:

Local: references x “knows about”
Foreign: reference x does not know about

8

Putting The Borrows Into Trees

Aliasing model tracks references in a tree data structure:

Nodes precisely represent references.

Each node x splits tree in two:

Local: references x “knows about”
Foreign: reference x does not know about

8

Putting The Borrows Into Trees

Aliasing model tracks references in a tree data structure:

x

Nodes precisely represent references.

Each node x splits tree in two:

Local: references x “knows about”
Foreign: reference x does not know about

8

Putting The Borrows Into Trees

Aliasing model tracks references in a tree data structure:

x

Nodes precisely represent references.

Each node x splits tree in two:

Local: references x “knows about”

Foreign: reference x does not know about

8

Putting The Borrows Into Trees

Aliasing model tracks references in a tree data structure:

x

Nodes precisely represent references.

Each node x splits tree in two:

Local: references x “knows about”
Foreign: reference x does not know about

8

Putting The Borrows Into Trees

Aliasing model tracks references in a tree data structure:

x

Nodes precisely represent references.

Each node x splits tree in two:

Local: references x “knows about”
Foreign: reference x does not know about

Access to foreign reference: foreign access

8

Putting The Borrows Into Trees

Aliasing model tracks references in a tree data structure:

x

Nodes precisely represent references.

Each node x splits tree in two:

Local: references x “knows about”
Foreign: reference x does not know about

Access to foreign
local

reference: foreign
local

access

9

Each Node is a State Machine

States represent permissions to read or write.

Every access causes transitions at every node, based on

Local (↑) vs. Foreign (↓) access
Read (R) vs. Write (W) access

Reserved Unique Frozen

Disabled

EUBE

↓W

↑W ↓R

↓R,↑R ↑R,↑W ↓R,↑R

↓R,↓W

↑W

↑R,↑W

9

Each Node is a State Machine

States represent permissions to read or write.

Every access causes transitions at every node, based on

Local (↑) vs. Foreign (↓) access
Read (R) vs. Write (W) access

Reserved Unique Frozen

Disabled

EUBE

↓W

↑W ↓R

↓R,↑R ↑R,↑W ↓R,↑R

↓R,↓W

↑W

↑R,↑W

9

Each Node is a State Machine

States represent permissions to read or write.

Every access causes transitions at every node, based on

Local (↑) vs. Foreign (↓) access
Read (R) vs. Write (W) access

Reserved Unique Frozen

Disabled

EUBE

↓W

↑W ↓R

↓R,↑R ↑R,↑W ↓R,↑R

↓R,↓W

↑W

↑R,↑W

10

Tree Borrows By Example

static mut GLOBAL: i32 = 0;

foo(&mut GLOBAL);

fn foo(a: &mut i32) {
let x = *a;
*a = 42;
println!("{}", &GLOBAL);
*a = x;

}

10

Tree Borrows By Example

static mut GLOBAL: i32 = 0;

foo(&mut GLOBAL);

fn foo(a: &mut i32) {
let x = *a;
*a = 42;
println!("{}", &GLOBAL);
*a = x;

}

10

Tree Borrows By Example

static mut GLOBAL: i32 = 0;

foo(&mut GLOBAL);

fn foo(a: &mut i32) {
let x = *a;
*a = 42;
println!("{}", &GLOBAL);
*a = x;

}

GLOBAL: Unique

10

Tree Borrows By Example

static mut GLOBAL: i32 = 0;

foo(&mut GLOBAL);

fn foo(a: &mut i32) {
let x = *a;
*a = 42;
println!("{}", &GLOBAL);
*a = x;

}

GLOBAL: Unique

10

Tree Borrows By Example

static mut GLOBAL: i32 = 0;

foo(&mut GLOBAL);

fn foo(a: &mut i32) {
let x = *a;
*a = 42;
println!("{}", &GLOBAL);
*a = x;

}

GLOBAL: Unique

a: Reserved

10

Tree Borrows By Example

static mut GLOBAL: i32 = 0;

foo(&mut GLOBAL);

fn foo(a: &mut i32) {
let x = *a;
*a = 42;
println!("{}", &GLOBAL);
*a = x;

}

GLOBAL: Unique

a: Reserved

10

Tree Borrows By Example

static mut GLOBAL: i32 = 0;

foo(&mut GLOBAL);

fn foo(a: &mut i32) {
let x = *a;
*a = 42;
println!("{}", &GLOBAL);
*a = x;

}

GLOBAL: Unique

a: Reserved

Reserved + ↑R → Reserved

10

Tree Borrows By Example

static mut GLOBAL: i32 = 0;

foo(&mut GLOBAL);

fn foo(a: &mut i32) {
let x = *a;
*a = 42;
println!("{}", &GLOBAL);
*a = x;

}

GLOBAL: Unique

a: Reserved

10

Tree Borrows By Example

static mut GLOBAL: i32 = 0;

foo(&mut GLOBAL);

fn foo(a: &mut i32) {
let x = *a;
*a = 42;
println!("{}", &GLOBAL);
*a = x;

}

GLOBAL: Unique

a: Unique

Reserved + ↑W → Unique

10

Tree Borrows By Example

static mut GLOBAL: i32 = 0;

foo(&mut GLOBAL);

fn foo(a: &mut i32) {
let x = *a;
*a = 42;
println!("{}", &GLOBAL);
*a = x;

}

GLOBAL: Unique

a: Unique

10

Tree Borrows By Example

static mut GLOBAL: i32 = 0;

foo(&mut GLOBAL);

fn foo(a: &mut i32) {
let x = *a;
*a = 42;
println!("{}", &GLOBAL);
*a = x;

}

GLOBAL: Unique

a: Unique Frozen

10

Tree Borrows By Example

static mut GLOBAL: i32 = 0;

foo(&mut GLOBAL);

fn foo(a: &mut i32) {
let x = *a;
*a = 42;
println!("{}", &GLOBAL);
*a = x;

}

GLOBAL: Unique

a: Frozen Frozen

Unique + ↓R → Frozen

10

Tree Borrows By Example

static mut GLOBAL: i32 = 0;

foo(&mut GLOBAL);

fn foo(a: &mut i32) {
let x = *a;
*a = 42;
println!("{}", &GLOBAL);
*a = x;

}

GLOBAL: Unique

a: Frozen Frozen

10

Tree Borrows By Example

static mut GLOBAL: i32 = 0;

foo(&mut GLOBAL);

fn foo(a: &mut i32) {
let x = *a;
*a = 42;
println!("{}", &GLOBAL);
*a = x;

}

GLOBAL: Unique

a: Frozen Frozen

Frozen + ↑W ̸→

11

Each Node is a State Machine

States represent permissions to read or write.

Every access causes transitions at every node, based on

Local (↑) vs. Foreign (↓) access
Read (R) vs. Write (W) access

Reserved Unique Frozen

Disabled

EUBE

↓W

↑W ↓R

↓R,↑R ↑R,↑W ↓R,↑R

↓R,↓W

↑W

↑R,↑W

11

Each Node is a State Machine

States represent permissions to read or write.

Every access causes transitions at every node, based on

Local (↑) vs. Foreign (↓) access
Read (R) vs. Write (W) access

Reserved Unique Frozen

Disabled

EUBE

↓W

↑W ↓R

↓R,↑R ↑R,↑W ↓R,↑R

↓R,↓W

↑W

↑R,↑W

12

Tree Borrows: What Else is There?

1. Protectors: More UB, more optimizations
2. Concurrency: Supported
3. Lazy initialization: Use &mut v[0] at offset 1
4. Two-phased Borrows: Supported
5. Interior Mutability: Supported
6. Dirty Hacks: Not Required

Our predecessor, Stacked Borrows, lacks support for (3)-(6).

12

Tree Borrows: What Else is There?

1. Protectors: More UB, more optimizations

2. Concurrency: Supported
3. Lazy initialization: Use &mut v[0] at offset 1
4. Two-phased Borrows: Supported
5. Interior Mutability: Supported
6. Dirty Hacks: Not Required

Our predecessor, Stacked Borrows, lacks support for (3)-(6).

12

Tree Borrows: What Else is There?

1. Protectors: More UB, more optimizations
2. Concurrency: Supported

3. Lazy initialization: Use &mut v[0] at offset 1
4. Two-phased Borrows: Supported
5. Interior Mutability: Supported
6. Dirty Hacks: Not Required

Our predecessor, Stacked Borrows, lacks support for (3)-(6).

12

Tree Borrows: What Else is There?

1. Protectors: More UB, more optimizations
2. Concurrency: Supported
3. Lazy initialization: Use &mut v[0] at offset 1

4. Two-phased Borrows: Supported
5. Interior Mutability: Supported
6. Dirty Hacks: Not Required

Our predecessor, Stacked Borrows, lacks support for (3)-(6).

12

Tree Borrows: What Else is There?

1. Protectors: More UB, more optimizations
2. Concurrency: Supported
3. Lazy initialization: Use &mut v[0] at offset 1
4. Two-phased Borrows: Supported

5. Interior Mutability: Supported
6. Dirty Hacks: Not Required

Our predecessor, Stacked Borrows, lacks support for (3)-(6).

12

Tree Borrows: What Else is There?

1. Protectors: More UB, more optimizations
2. Concurrency: Supported
3. Lazy initialization: Use &mut v[0] at offset 1
4. Two-phased Borrows: Supported
5. Interior Mutability: Supported

6. Dirty Hacks: Not Required

Our predecessor, Stacked Borrows, lacks support for (3)-(6).

12

Tree Borrows: What Else is There?

1. Protectors: More UB, more optimizations
2. Concurrency: Supported
3. Lazy initialization: Use &mut v[0] at offset 1
4. Two-phased Borrows: Supported
5. Interior Mutability: Supported
6. Dirty Hacks: Not Required

Our predecessor, Stacked Borrows, lacks support for (3)-(6).

12

Tree Borrows: What Else is There?

1. Protectors: More UB, more optimizations
2. Concurrency: Supported
3. Lazy initialization: Use &mut v[0] at offset 1
4. Two-phased Borrows: Supported
5. Interior Mutability: Supported
6. Dirty Hacks: Not Required

Our predecessor, Stacked Borrows, lacks support for (3)-(6).

13

Tree Borrows: A Collaboration

DerekJohannesRalfNeven

13

Tree Borrows: A Collaboration

DerekJohannesRalfNeven

Miri

13

Tree Borrows: A Collaboration

DerekJohannesRalfNeven

Miri Simuliris

13

Tree Borrows: A Collaboration

DerekJohannesRalfNeven

Miri Simuliris

13

Tree Borrows: A Collaboration

DerekJohannesRalfNeven

Miri Simuliris

13

Tree Borrows: A Collaboration

DerekJohannesRalfNeven

Miri Simuliris Program Logic

13

Tree Borrows: A Collaboration

DerekJohannesRalfNeven

Miri Simuliris (WP0) Program Logic

13

Tree Borrows: A Collaboration

DerekJohannesRalfNeven

Miri Simuliris (WP0) Program Logic (WP1)

14

Leveraging Rust’s Lifetimes
for

and

Tree Borrows Spec Testing

14

Leveraging Rust’s Lifetimes
for

and

Tree Borrows Spec Testing

15

Specify All The Things

Two of my future work packages mention specification(s):

Work Package 2: Work Package 3:

15

Specify All The Things

Two of my future work packages mention specification(s):

Work Package 2: Work Package 3:

15

Specify All The Things

Two of my future work packages mention specification(s):

Work Package 2:

Specification
of Rust’s Operational Semantics

Work Package 3:

Specification
of functions written in Rust

15

Specify All The Things

Two of my future work packages mention specification(s):

Work Package 2:

Specification
of Rust’s Operational Semantics

What does *x = 42; do?

Work Package 3:

Specification
of functions written in Rust

15

Specify All The Things

Two of my future work packages mention specification(s):

Work Package 2:

Specification
of Rust’s Operational Semantics

What does *x = 42; do?

Work Package 3:

Specification
of functions written in Rust

Pre- and Post-conditions

15

Specify All The Things

Two of my future work packages mention specification(s):

Work Package 2:

Specification
of Rust’s Operational Semantics

What does *x = 42; do?

Goal: Give Formal Definition

Work Package 3:

Specification
of functions written in Rust

Pre- and Post-conditions

Goal: Verification Tool Interoperability

15

Specify All The Things

Two of my future work packages mention specification(s):

Work Package 2:

Specification
of Rust’s Operational Semantics

What does *x = 42; do?

Goal: Give Formal Definition

Work Package 3:

Specification
of functions written in Rust

Pre- and Post-conditions

Goal: Verification Tool Interoperability

16

Rust Has Many Verification Tools

16

Rust Has Many Verification Tools

16

Rust Has Many Verification Tools

CreusotCreusot

16

Rust Has Many Verification Tools

CreusotCreusot

Verus

16

Rust Has Many Verification Tools

CreusotCreusot

Verus

RefinedRust

16

Rust Has Many Verification Tools

CreusotCreusot

Verus

RefinedRust

16

Rust Has Many Verification Tools

CreusotCreusot

Verus

RefinedRustAeneasAeneasAeneas

16

Rust Has Many Verification Tools

CreusotCreusot

Verus Gillian-Rust

RefinedRustAeneasAeneasAeneas

16

Rust Has Many Verification Tools

CreusotCreusot

Verus Gillian-Rust

RefinedRustAeneasAeneasAeneas

17

Can we improve this?

Miri spot-checks for absence of UB.

Miri spot-checks that code obeys specification?

But what about?

Spec languages mutually incompatible
Spec languages not made for spot-checking

Miri is widely used, testing is more approachable

17

Can we improve this?

Miri spot-checks for absence of UB.

Miri spot-checks that code obeys specification?

But what about?

Spec languages mutually incompatible
Spec languages not made for spot-checking

Miri is widely used, testing is more approachable

17

Can we improve this?

Miri spot-checks for absence of UB.

Miri spot-checks that code obeys specification?

But what about?

Spec languages mutually incompatible
Spec languages not made for spot-checking

Miri is widely used, testing is more approachable

17

Can we improve this?

Miri spot-checks for absence of UB.

Miri spot-checks that code obeys specification?

But what about?

Spec languages mutually incompatible
Spec languages not made for spot-checking

Miri is widely used, testing is more approachable

17

Can we improve this?

Miri spot-checks for absence of UB.

Miri spot-checks that code obeys specification?

But what about?

Spec languages mutually incompatible
Spec languages not made for spot-checking

Miri is widely used, testing is more approachable

18

Different Styles Of Verification Languages

Kani-style: Creusot-style:

{i < x.len()} {i < x.len()}

fn foo<'a>(x: &'a mut Vec<i32>, i: usize)
-> &'a mut i32 {
&mut x[i]

}

{result ≡ptr x[i]}


∗result = (∗x)[i]

∧ result = (x)[i]
∧ ∀n ̸= i : (∗x)[n] = (x)[n]



18

Different Styles Of Verification Languages

Kani-style: Creusot-style:

{i < x.len()} {i < x.len()}

fn foo<'a>(x: &'a mut Vec<i32>, i: usize)
-> &'a mut i32 {
&mut x[i]

}

{result ≡ptr x[i]}


∗result = (∗x)[i]

∧ result = (x)[i]
∧ ∀n ̸= i : (∗x)[n] = (x)[n]



18

Different Styles Of Verification Languages

Kani-style: Creusot-style:

{i < x.len()} {i < x.len()}

fn foo<'a>(x: &'a mut Vec<i32>, i: usize)
-> &'a mut i32 {
&mut x[i]

}

{result ≡ptr x[i]}


∗result = (∗x)[i]

∧ result = (x)[i]
∧ ∀n ̸= i : (∗x)[n] = (x)[n]



18

Different Styles Of Verification Languages

Kani-style: Creusot-style:

{i < x.len()} {i < x.len()}

fn foo<'a>(x: &'a mut Vec<i32>, i: usize)
-> &'a mut i32 {
&mut x[i]

}

{result ≡ptr x[i]}


∗result = (∗x)[i]

∧ result = (x)[i]
∧ ∀n ̸= i : (∗x)[n] = (x)[n]



18

Different Styles Of Verification Languages

Kani-style: Creusot-style:

{i < x.len()} {i < x.len()}

fn foo<'a>(x: &'a mut Vec<i32>, i: usize)
-> &'a mut i32 {
&mut x[i]

}

{result ≡ptr x[i]}


∗result = (∗x)[i]

∧ result = (x)[i]
∧ ∀n ̸= i : (∗x)[n] = (x)[n]



19

Verification Languages Are (Not) Executable

∀ ∃ ∞
Quantifiers

Goal for WP3: Design a testing-based spec checker...
...for an ownership-based, prophetic specification language!

19

Verification Languages Are (Not) Executable

∀ ∃ ∞
Quantifiers

Not executable!

Goal for WP3: Design a testing-based spec checker...
...for an ownership-based, prophetic specification language!

19

Verification Languages Are (Not) Executable

∀ ∃ ∞
Quantifiers

∗ −−∗
Ownership

Not executable!

Goal for WP3: Design a testing-based spec checker...
...for an ownership-based, prophetic specification language!

19

Verification Languages Are (Not) Executable

∀ ∃ ∞
Quantifiers

∗ −−∗
Ownership

Not executable! Seems executable...

Goal for WP3: Design a testing-based spec checker...
...for an ownership-based, prophetic specification language!

19

Verification Languages Are (Not) Executable

∀ ∃ ∞
Quantifiers

∗ −−∗
Ownership Prophecies

Not executable! Seems executable...

Goal for WP3: Design a testing-based spec checker...
...for an ownership-based, prophetic specification language!

19

Verification Languages Are (Not) Executable

∀ ∃ ∞
Quantifiers

∗ −−∗
Ownership Prophecies

Not executable! Seems executable... Maybe executable?

Goal for WP3: Design a testing-based spec checker...
...for an ownership-based, prophetic specification language!

19

Verification Languages Are (Not) Executable

∀ ∃ ∞
Quantifiers

∗ −−∗
Ownership Prophecies

Not executable! Seems executable... Maybe executable?

Goal for WP3: Design a testing-based spec checker...

...for an ownership-based, prophetic specification language!

19

Verification Languages Are (Not) Executable

∀ ∃ ∞
Quantifiers

∗ −−∗
Ownership Prophecies

Not executable! Seems executable... Maybe executable?

Goal for WP3: Design a testing-based spec checker...
...for an ownership-based, prophetic specification language!

20

The End

Thanks for your attention!

8

Putting The Borrows Into Trees

Aliasing model tracks references in a tree data structure:

x

Nodes precisely represent references.

Each node x splits tree in two:

Local: references x “knows about”
Foreign: reference x does not know about

Access to foreign
local

reference: foreign
local

access

13

Tree Borrows: A Collaboration

DerekJohannesRalfNeven

Miri Simuliris Program Logic

17

Can we improve this?

Miri spot-checks for absence of UB.

Miri spot-checks that code obeys specification?

But what about?

Spec languages mutually incompatible
Spec languages not made for spot-checking

Miri is widely used, testing is more approachable

All icons by https://www.flaticon.com/authors/freepik

